This application claims priority to German Patent Application 10 2010 062 813.1 filed on Dec. 10, 2010, and International Patent Application PCT/EP2011/072320 filed on Dec. 9, 2011, both of which are hereby incorporated by reference in their entirety.
The present invention relates to a fuel filter, in particular a fuel filter having an annular filter element through which flow passes radially according to the preamble of claim 1.
DE 10 2006 060 128 A1 discloses a generic fuel filter which is used as a fuel filter in an internal combustion engine of a motor vehicle. In particular when such fuel filters are used as fuel filter, it is important for a long service life of the internal combustion engine that as much of the water still contained in the fuel is filtered out as possible in order to prevent corrosion processes resulting therefrom inside the internal combustion engine.
The present invention is concerned with the problem of specifying an improved or at least an alternative embodiment for a fuel filter of the generic type, which in particular has a good filtering effect.
This problem is solved according to the invention by the subject matter of independent claim 1. Advantageous embodiments form the subject matter of the dependent claims.
The present invention is based on the general concept of additionally providing at least one, preferably two further annular filter elements in a fuel filter which is known per se and has a housing and a first annular filter element arranged therein and thereby achieving a particularly good filtering and deposition effect. All of the at least two, preferably three annular filter elements are arranged coaxially to each other, at least two of the preferably three annular filter elements also being arranged offset to each other in the axial direction. All the annular filter elements are furthermore connected in series, and therefore flow passes through them in succession. The fuel must thus flow through at least two, preferably three annular filter elements from the untreated side to the clean side, which is the reason for the good filtering effect of the fuel filter according to the invention. The coaxial arrangement offset in the axial direction of the individual annular filter elements means that they can also easily be replaced separately, as a result of which the fuel filter can be constructed in a maintenance-friendly manner overall. The total of at least two, preferably three annular filter element can thus realise two, three or more filter stages, it being possible for example for dirt particles to be filtered out and an at least slight coalescence of the water entrained in the fuel to be achieved in the first filter stage, that is, at the first annular filter element. During this comparatively slight coalescence, water droplets are enlarged somewhat, which are then further coalesced, that is, further enlarged, at the second annular filter element, that is, at the second filter stage, which is for example formed purely as a coalescence stage. Cellulose, including native cellulose, which can be used in particular in the forms of a woven, knitted, looped or fleece fabric, can be used for example as the material in this case. In the subsequent third filter stage, that is, at the third annular filter element, a fine-meshed net of hydrophobic material can then be provided, so the third annular filter element functions as a final separator, which stops the water droplets which were enlarged in the first and second filter stages from passing through and deposits them. The fuel which has already been pre-cleaned by the first and second filter stages is thus filtered again and at the same time dewatered at the third filter stage and by the third annular filter element. With the at least two-stage, preferably three-stage fuel filter according to the invention, a particularly good filtering effect can be achieved, in particular with respect to dirt and solid particles, as well as a much improved dewatering of the filtered fuel. The filter fuel contains less residual water overall, as a result of which a risk of corrosion can be reduced.
Further important features and advantages of the invention can be found in the subclaims, the drawings and the associated description of the figures using the drawings.
It is self-evident that the above-mentioned features and those still to be explained below can be used not only in the combination given in each case but also in other combinations or alone without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the description below, the same reference symbols referring to the same or similar or functionally equivalent components.
In the figures,
a schematically shows a sectional diagram through a possible embodiment of a second ring filter element,
b schematically shows a view of the second annular filter element according to the embodiment of
According to
A first annular filter element 3, which has an upper and a lower end disc 4 and 5, is arranged in the housing 2. In this case top and bottom refer to
A further adapter element 9 can be fastened to this adapter element 9′, which is connected to the lower end disc 5 of the first filter element 3. If it is desired that the further annular filter elements 6, 7 be made replaceable, a connection 10 between adapter element 9 and 9′ can be detachable, e.g. by screw fastening, clipping etc. It is important that this connection 10 of the two adapter elements 9 and 9′ is sealed off from the untreated space 51. These two adapter elements 9 and 9′ form a type of pot, which is fastened in a sealing manner by means of a seal 52 from a dome of the housing 2 or a dome of a functional carrier 53 in which the housing 2 can remain. The adapter element 9 further has an integrally formed continuation 55, which seals off a no-load duct 60 of the filter device 1 when the filter device 1 is inserted in the housing 2.
The functional carrier 53 has an opening 54 through which the water deposited from the fuel can drain from the clean side of the first annular filter element 3 into a water collection space (not shown in detail), which can be situated underneath the filter device 1. The functional carrier 53 consists of a plurality of parts 53′, 53″ and 53″. The inner part 53″ contains a drainage duct 56 of the clean side; the adapter element 9 is attached in a leakproof manner to this. The outer part 53′ together with a projection 69 forms the holder for the third annular filter element 7.
In both exemplary embodiments, the adapter element 9 is sealed off by means of the seal 52 from the dome of the functional carrier 53 and thus fastened detachably to the latter. The functional carrier 53 contains an outflow duct 56 for fuel on the clean side of the filter device 1 and in its lower part an opening 54 and an associated water drainage duct 57. The functional carrier 53 is sealed off from the housing 2 by means of a further seal 52′.
According to the invention, then, a second annular filter element 6 and a third annular filter element 7 are provided. All of these annular filter elements 3, 6, 7 are arranged coaxially to each other, at least two of the total of three annular filter elements 3, 6, 7 also being arranged offset to each other in the axial direction. If the embodiment of the fuel filter 1a according to the invention in
The lower end disc 5 of the first annular filter element 3 has a projection 61 on its inner edge, against which projection the second annular filter element 6 bears in a sealing manner.
In the first embodiment in
In the first embodiment, the third annular filter element 7 has a supporting frame 66, in which the final separator in the form of a hydrophobic woven fabric is fastened. In
Assembly takes place as follows for the first exemplary embodiment: First, the lower adapter element 9 must be placed onto the functional carrier part 53″. After the outer functional carrier part 53′ together with the third annular filter element 7 has been attached to the part 53″ on the functional carrier part 53″, the second annular filter element 6 is placed over this onto the functional carrier 53. Finally, the first annular filter element 3 is fastened with its end disc 5 to the functional carrier 53 and to the adapter element 9. The upper end disc 4 of the first annular filter element 3 bears in a leakproof manner against the upper end of the functional carrier 53 by means of a further seal 52″. When the filter device 1 is changed, it is removed completely from the housing 2. The the individual parts can be separated from each other and only the ones that need are replaced.
In this exemplary embodiment too, the third annular filter element 7 is formed from a supporting frame 66 and a hydrophobic screen. The supporting frame 66 is fastened detachably to the connection 70 with the functional carrier 53 by suitable connecting means. The third annular filter element 7 is sealed off from the functional carrier 53 by means of a seal 68, so no mixing of the clean side 56 with the fuel which still contains water takes place upstream of the third annular filter element 7. If required, the third annular filter element 7 can be connected in a non-detachable manner to the functional carrier 53, e.f. by welding. Flow-directing elements can be provided in the duct 80 which is situated between the lower end disc 5 of the first annular ring filter element 3 and the projection 69 of the functional carrier 53 in order to increase the water deposition rate. These flow-directing elements can be formed in particular in such a manner that they produce a tangential flow, that is, which flows parallel to the surface of the filter element 7.
Assembly takes place as follows for the second exemplary embodiment: First, the lower adapter element 9 must be placed onto the functional carrier part 53″. After the outer functional carrier part 53′ together with the third annular filter element 7 has been attached to the part 53″, the first annular filter element 3 with the second annular filter element 6 integrated therein is placed over this onto the functional carrier 53. Finally, the first annular filter element 3 is fastened with its end disc 5 to the functional carrier 53 and to the adapter element 9. The upper end disc 4 of the first annular filter element 3 bears in a leakproof manner against the upper end of the functional carrier part 53′″ by means of a further seal 52′″. When the filter device 1 is changed, it is removed completely from the housing 2. The the individual parts can be separated from each other and only the ones that need are replaced.
If the fuel filter 1a of
Generally, the first annular filter element 3 is formed as a dirt filter and is therefore used to filter out dirt particles. The first annular filter element 3 can also have an at least slight coalescer function and thereby enlarge water droplets present in the fuel. The second annular filter element 6 is preferably formed purely as a coalescer and enlarges the emulsified water droplets further. A native cellulose, which is in turn formed as a fleece or a looped, knitted or woven fabric, can for example be used as the material for the second annular filter element 6. Of course, other or further coalescence materials can be used in the woven or fleece or looped form mentioned. Finally, the third annular filter element 7 is formed as a hydrophobic final separator and at the same time as a dirt filter, a hydrophobic and fine-meshed net being selected as the material for the third annular filter element 7. This hydrophobic net prevents the water droplets which were enlarged by the first and second annular filter elements 3 and 6 from passing through, so they can be collected in a water collection space 8 situated below the third annular filter element 7. The fuel filter 1 a according to the invention is thus able to effect particularly good filtration and at the same time withdraw as much of the entrained water as possible, as a result of which in particular a tendency to corrode can be reliably reduced. The flow of the fuel to be filtered inside the filter device 1 is shown with flow arrows 8.
If the fuel filters 1a of
If
With the fuel filter 1a according to the invention, which can generally also be applied to other fluid filters in the transferred sense, particularly effective filtering of the fluid to be filtered, in particular of the fuel to be filtered, can be achieved, it being possible not only to filter the said fluid but also dewater it. It is thus possible with the fluid filter according to the invention or the fuel filter 1a according to the invention both to filter out solids and to filter out liquids, for example water. The possibility of replacing the annular filter elements 3, 6 and 7 individually and therefore separately from each other means that the ease of maintenance of the fuel filter 1a according to the invention can be much improved.
Number | Date | Country | Kind |
---|---|---|---|
102010062813.1 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/72320 | 12/9/2011 | WO | 00 | 8/26/2013 |