The present invention relates to combustion turbine engines, and more particularly, to fuel injectors disposed downstream of primary fuel nozzles in the combustion systems.
Multiple designs exist for staged combustion in combustion turbine engines, but most are complicated assemblies consisting of a plurality of tubing and interfaces. One kind of staged combustion used in combustion turbine engines is often referred to as “late lean injection.” In this type of staged combustion, late lean fuel injectors are located downstream of the primary fuel nozzle. As one of ordinary skill in the art will appreciate, combusting a fuel/air mixture at this downstream location may be used to improve NOx performance. NOx, or oxides of nitrogen, is one of the primary undesirable air polluting emissions produced by combustion turbine engines that burn conventional hydrocarbon fuels. The late lean injection may also function as an air bypass, which may be used to improve carbon monoxide or CO emissions during “turn down” or low load operation. It will be appreciated that late lean injection systems may provide other operational benefits.
Conventional late lean injection assemblies are expensive and costly for both new gas turbine units and retrofits of existing units. One of the reasons for this is the complexity of conventional late lean injection systems, particularly those systems associated with the fuel and air delivery. The many parts associated with these complex systems must be designed to withstand the extreme thermal and mechanical loads of the turbine environment, which significantly increases manufacturing and installation cost. Even so, conventional late lean injection assemblies still have a high risk for fuel leakage into the compressor discharge casing, which can result in auto-ignition and a safety issue.
Additionally, conventional late lean injectors perform poorly in regard to providing a well-mixed fuel/air mixture for combustion within the combustion chamber. Further, conventional designs fail to efficiently use air supplied from within the flow annulus formed of the combustor.
As a result, there is a need for improved late lean injection systems and components, particularly those that reduce system complexity, assembly time, and manufacturing cost, while also performing effectively and making efficient usage of the air supply flowing through this region of the turbine. Additionally, such injection systems should restrict the back-flow of fluid within the passage that traverses the flow annulus within the combustor so to limit the occurrence of flame-holding.
The present application thus describes an assembly for use in a fuel injection system within a combustor of a combustion turbine engine. The combustor may include an inner radial wall, which defines a primary combustion chamber downstream of a primary fuel nozzle, and an outer radial wall, which surrounds the inner radial wall so to form a flow annulus therebetween. The fuel injection assembly may further include: a first port formed through the outer radial wall; a second port formed through the inner radial wall; a plenum formed about the first port, the plenum comprising a volume disposed outboard of an outer surface of the outer radial wall; a tube comprising a first end positioned within the first port and a second end positioned within the second port, wherein at the first end, wherein the tube is sized smaller than the first port such that two passages are defined therethrough: a first passage defined about an exterior of the tube; and a second passage defined through an interior of the tube; and fuel outlets disposed within the first passage. These and other features of the present application will become apparent upon review of the following detailed description of the preferred embodiments when taken in conjunction with the drawings and the appended claims.
These and other features of this invention will be more completely understood and appreciated by careful study of the following more detailed description of exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which:
As an initial matter, in order to clearly delineate the invention of the current application, it may be necessary to select terminology that refers to and describes certain parts or machine components within a combustion turbine engine. Whenever possible, common industry terminology will be used and employed in a manner consistent with its accepted meaning. However, it is meant that any such terminology be given a broad meaning and not narrowly construed such that the meaning intended herein and the scope of the appended claims is unreasonably restricted. Those of ordinary skill in the art will appreciate that often a particular component may be referred to using several different terms. In addition, what may be described herein as being single part may include and be referenced in another context as consisting of multiple components, or, what may be described herein as including multiple components may be referred to elsewhere as a single part. As such, in understanding the scope of the present invention, attention should not only be paid to the terminology and description provided herein, but also to the structure, configuration, function, and/or usage of the component, particularly as provided in the appended claims.
In addition, several descriptive terms may be used regularly herein, and it should prove helpful to define these terms at the onset of this section. Accordingly, these terms and their definitions, unless stated otherwise, are as follows. As used herein, “downstream” and “upstream” are terms that indicate a direction relative to the flow of a fluid, such as the working fluid through the turbine engine or, for example, the flow of air through the combustor or coolant through one of the turbine's component systems. As such, the term “downstream” corresponds to the direction of flow of the fluid, and the term “upstream” refers to the direction opposite to the flow. The terms “forward” and “aft”, without any further specificity, refer to directions, with “forward” referring to the forward or compressor end of the engine, and “aft” referring to the aft or turbine end of the engine. In the case of the combustor, it will be appreciated that the forward end is the headend, and the aft end is the outlet of the transition piece. The term “radial” refers to movement or position perpendicular to an axis. It is often required to describe parts that are at differing radial positions with regard to a center axis. In cases such as this, if a first component resides closer to the axis than a second component, it will be stated herein that the first component is “radially inward” or “inboard” of the second component. If, on the other hand, the first component resides further from the axis than the second component, it may be stated herein that the first component is “radially outward” or “outboard” of the second component. The term “axial” refers to movement or position parallel to an axis. Finally, the term “circumferential” refers to movement or position around an axis. It will be appreciated that such terms may be applied in relation to the center axis of the turbine, or, when referring to components within a combustor, the center axis of the combustor.
Turning again to the figures,
It will be appreciated that the flow sleeve 26 and impingement sleeve 27 typically has impingement apertures (not shown) formed therethrough which allow an impinged flow of compressed air from the compressor 12 to enter the flow annulus 27 formed between the flow sleeve 26/liner 24 and/or the impingement sleeve 28/transition piece 25. The flow of compressed air through the impingement apertures convectively cools the exterior surfaces of the liner 24 and transition piece 25. The compressed air entering the combustor 20 through the flow sleeve 26 and the impingement sleeve 28 is directed toward the forward end of the combustor 20 via the flow annulus 27 formed about the liner 24. The compressed air then enters the fuel nozzles 21, where it is mixed with a fuel for combustion within the combustion zone 23. As noted above, the turbine engine 16 includes a turbine 16 having circumferentially spaced rotor blades, into which products of the combustion of the fuel in the combustor are directed. The transition piece 25 directs the flow of combustion products of the liner 24 into the turbine 16, where it interacts with the rotor blades to induce rotation about the shaft, which, as stated, then may be used to drive a load, such as a generator. Thus, the transition piece 25 serves to couple the combustor 20 and the turbine 16. In systems that include late lean fuel injection, as discussed below, it will be appreciated that the transition piece 25 also may define a secondary combustion zone in which additional fuel supplied thereto is combusted.
Aspects of the present invention provide performance enhancing ways in which a fuel/air mixture may be injected into aft areas of the combustion zone 23 and/or liner 24. As shown, the fuel injection system 40 may include a fuel passageway 29 defined within the flow sleeve 26. In one example, the fuel passageway 29 originates at a fuel manifold 30 defined within a flow sleeve flange 31, which is positioned at the forward end of the flow sleeve 26. The fuel passageway 29 may extend from the fuel manifold 30 to a fuel injector 41. As shown the fuel injectors 41 may be positioned at or near the aft end of the flow sleeve 26, though other configurations are possible. In a preferred embodiment, there may be several fuel injectors 41 positioned circumferentially around the flow sleeve 26/liner 24 assembly so that a fuel/air mixture is introduced at multiple points around the combustion zone 23.
It will be appreciated that the fuel injectors 41 may also be installed in similar fashion at positions further forward or aft in a combustor 14 than those shown in the various figures, or, for that matter, anywhere where a flow assembly is present that has the same basic configuration as that described above for the liner 24/flow sleeve 26 assembly. For example, using the same basic components, the fuel injector 41 also may be positioned within the transition piece 25/impingement sleeve 28 assembly. In this instance, the fuel passageway 29 may be extended to make the connection with fuel injector 41, and the fuel/air mixture may be injected into the hot-gas flow path within the transition piece 25. As one of ordinary skill in the art will appreciate, this configuration may be advantageous given certain criteria and operator preferences. While the several provided figures are directed toward an exemplary embodiment within the liner 24/flow sleeve 26 assembly, it will be appreciated that this is not meant to be limiting. Accordingly, when the description below refers to an “outer radial wall”, it will be appreciated that, unless stated otherwise, this could refer to a flow sleeve 26, an impingement sleeve 28, or similar component. And when the description below refers to an “inner radial wall”, it will be appreciated that, unless stated otherwise, this could refer to the liner 24, the transition piece 25, or similar component.
Embodiments of the present invention include a first port 42 formed through the outer radial wall, and a second port 43 formed through the inner radial wall. A plenum 44 may be formed about the first port 42 such that the plenum 44 includes an enclosed volume disposed, at least in part, outboard of the outer surface of the outer radial wall, as illustrated. In an alternative, the plenum may be disposed such that no portion resides outboard of the outer surface of the outer radial wall. A tube may be included that includes a first end positioned within the first port 42 and a second end positioned within the second port 43. At the first end, the tube 45 may be smaller than the first port 42 such that two passages are defined through the first port 42: a first passage 48 defined about the exterior of the tube 45 (i.e., between the tube 45 and the edge of the first port 42); and a second passage 49 defined through an interior of the tube 45. The present invention may include one or more fuel outlets 51 defined within the second passage 49.
The present invention may include a plurality of vanes 47 that span across the first passage 48. Each of the vanes 47 may extend from a connection to the edge of the first port 42 to a connection to the outer surface of the tube 45. In certain preferred embodiments, the vanes 47 are regularly spaced around the tube 45 and support the first end of the tube 45 in a fixed central position within the first port 42. The fuel outlets 51 may be positioned on the vanes 47. In certain preferred embodiments, a fuel plenum 52 is position within the outer radial wall so that it surrounds the first port 42. Each fuel outlet 51 may be configured to fluidly communicate with the fuel plenum 52 via channels formed within the vanes 47. The fuel plenum 52 may include a connection to the fuel passageway 29, and the fuel supply to the fuel injector 41 may be supplied via these described passages.
As illustrated, in certain preferred embodiments, each of the vanes 47 may be a fin or have a fin-like shape. It will be appreciated that each of the fins may include an upstream edge and a downstream edge. The fuel outlets 51 may be positioned on the upstream edge, the downstream edge, or both. As illustrated in
The tube 45 may be configured so that the outboard edge of the first end resides approximately coplanar to the plane of the first port 42, an example of which is shown in
The cross-sectional shape of the first end of the tube 45 may be circular or elliptical (hereinafter “roughly circular”) in shape. The cross-sectional shape of the first port 42 also may be roughly circular. The relative flow areas through the first passage 49 and the second passage 48 may be configured to enhance flow therethrough. That is, the first end of the tube 45 and the first port 42 may be configured so that the cross-sectional flow area of the first passage 48 is proportionally desirable to the cross-sectional flow area of the second passage 49. In certain preferred embodiments, the cross-sectional flow area of the second passage 49 is approximately 5 to 8 times the cross-sectional flow area of the first passage 48.
The plenum 44, as illustrated, may be defined by a plenum wall 58. The plenum wall 58 may extend outboard from a footprint defined on the outer surface of the outer radial wall. As shown, the plenum wall 58 may form a dome or mushroom shape. In certain preferred embodiments, as illustrated, the plenum wall 58 extends outboard and tapers gradually to a plenum ceiling 59, which defines the outer radial boundary of the plenum 44. As shown in
In certain preferred embodiments, the footprint of the plenum wall 58 also may have a rough circular shape. In certain preferred embodiments, the footprint of the plenum wall 58, the first end of the tube 45, and the first port 42 each comprise the same or similar rough circular shape. In such cases, the footprint of the plenum wall 58, the first end of the tube 45, and the first port 42 may have a concentric arrangement, as illustrated.
As included in
Between the first end and the second end, the tube 45 may have an enclosed or solid structure. That is, the tube 45 may be configured such that a fluid moving through the tube 45 is isolated from the cross flow of fluid moving through the flow annulus 27. Similarly, the plenum wall 58 may be configured so that it also is a closed, solid structure. Specifically, the plenum wall 58 may be configured such that a fluid moving through the plenum 44 is isolated from a fluid moving along the outer surface of the outer radial wall as well as the outer surface of the plenum wall 58.
As stated, in preferred embodiments, the inner radial wall is the liner 24 and the outer radial wall is the flow sleeve 26 of the combustor assembly 20. In an alternate arrangement, the inner radial wall is the transition piece 25 and the outer radial wall is the impingement sleeve 28 of a combustor assembly. It will be appreciated that the number of fuel injectors 41 may be varied, depending on the fuel supply requirements and optimization of the combustion process.
In usage, it will be appreciated that the fuel injection system 40 of the present invention may operate as follows. A supply of fuel is delivered to the fuel outlet 51 positioned within the first passage 48 (i.e., the passage defined between the tube 45 and edge of the first port 48), while compressed air is delivered to the first passage 48 via the connection the first passage 48 makes to the flow annulus 27. As illustrated, the first passage 48 surrounds the tube 45 so that air may enter the plenum 44 from the downstream side of the tube 45 (relative to the flow direction of air within the flow annulus 27), as the arrows of
In addition, certain embodiments of the present invention provide an effective manner by which the air and fuel are mixed before being injected into the combustion zone 23. Specifically, the flow path for the air/fuel mixture is lengthened by detouring the mixture into a plenum 44 located outboard of the flow sleeve 26. The flow path of the present invention results in a greater degree of mixing, a more uniform fuel/air mixture, and, thus, better combustion characteristics once injected into the combustion zone 23. It will be appreciated that without the plenum 44 configuration of the present invention, usage of compressed air from the flow annulus 27 would have a very short and direct path to the combustion zone 23, which would result in a poorly mixed air/fuel mixture.
In this manner, additional fuel and air may be added to the flow of hot combustion gases moving through the interior of the liner 24 and combusted therein, which adds energy to the flow of working fluid before it is expanded through the turbine 16. In addition, as described above, the addition of the fuel and air in this manner may be used to improve NOx emissions as well as achieve other operational objectives.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3924576 | Siewert | Dec 1975 | A |
4351156 | White | Sep 1982 | A |
4543894 | Griswold et al. | Oct 1985 | A |
4603548 | Ishibashi et al. | Aug 1986 | A |
4955191 | Okamoto et al. | Sep 1990 | A |
4989549 | Korenberg | Feb 1991 | A |
4998410 | Martinez-Leon et al. | Mar 1991 | A |
5054280 | Ishibashi et al. | Oct 1991 | A |
5076229 | Stanley | Dec 1991 | A |
5099644 | Sable et al. | Mar 1992 | A |
5127229 | Ishibashi et al. | Jul 1992 | A |
5450725 | Takahara et al. | Sep 1995 | A |
5829967 | Chyou | Nov 1998 | A |
5878566 | Endo et al. | Mar 1999 | A |
6289851 | Rabovitser et al. | Sep 2001 | B1 |
6609493 | Yamaguchi et al. | Aug 2003 | B2 |
6705117 | Simpson et al. | Mar 2004 | B2 |
6775987 | Sprouse et al. | Aug 2004 | B2 |
6925809 | Mowill | Aug 2005 | B2 |
7040094 | Fischer et al. | May 2006 | B2 |
8381532 | Berry | Feb 2013 | B2 |
8701383 | Venkataraman | Apr 2014 | B2 |
9010120 | DiCintio | Apr 2015 | B2 |
9097424 | Chen | Aug 2015 | B2 |
20010049932 | Beebe | Dec 2001 | A1 |
20020148230 | Halila | Oct 2002 | A1 |
20030010035 | Farmer et al. | Jan 2003 | A1 |
20030024234 | Holm et al. | Feb 2003 | A1 |
20070234733 | Harris et al. | Oct 2007 | A1 |
20080072599 | Morenko et al. | Mar 2008 | A1 |
20080264033 | Lacy et al. | Oct 2008 | A1 |
20090084082 | Martin et al. | Apr 2009 | A1 |
20100170216 | Venkataraman et al. | Jul 2010 | A1 |
20100170219 | Venkataraman et al. | Jul 2010 | A1 |
20100170251 | Davis, Jr. et al. | Jul 2010 | A1 |
20100170252 | Venkataraman et al. | Jul 2010 | A1 |
20100170254 | Venkataraman et al. | Jul 2010 | A1 |
20100174466 | Davis, Jr. et al. | Jul 2010 | A1 |
20100229557 | Matsumoto | Sep 2010 | A1 |
20100242482 | Kraemer | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20140116053 A1 | May 2014 | US |