Fuel injection device for an internal combustion engine

Information

  • Patent Grant
  • 6823846
  • Patent Number
    6,823,846
  • Date Filed
    Wednesday, April 23, 2003
    21 years ago
  • Date Issued
    Tuesday, November 30, 2004
    19 years ago
Abstract
The fuel injection device has a high-pressure pump that supplies highly pressurized fuel to at least one high-pressure reservoir connected to injectors disposed in cylinders of an engine, wherein the injectors are connected to a common low-pressure reservoir. A pressure holding valve maintains a predetermined low pressure in the low-pressure reservoir. A pressure regulating valve regulates the pressure in the high-pressure reservoir by diverting fuel from the at least one high-pressure reservoir through a diversion connection into a low-pressure region. The diversion connection of the pressure regulating valve is connected to the low-pressure reservoir so that the low-pressure reservoir is filled with fuel.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention is directed to an improved fuel injection device for an internal combustion engine.




2. Description of the Prior Art




A fuel injection device, known from DE 199 41 770 A1, has a high-pressure pump that supplies highly pressurized fuel into at least one high-pressure reservoir connected to injectors disposed in cylinders of the engine. The injectors are connected to a common return line, which constitutes a low-pressure reservoir. A minimum pressure must be maintained in the low-pressure reservoir in order to assure the proper functioning of the injectors, particularly if they have a control valve with a piezoelectric actuator and a hydraulic pressure booster device.




OBJECT AND SUMMARY OF THE INVENTION




The fuel injection device according to the invention has the advantage over the prior art that the pressure holding valve permits a minimum pressure to be maintained in the low-pressure reservoir. In addition, it is also possible to fill the low-pressure reservoir with fuel specifically by diverting fuel from the high-pressure reservoir by means of the pressure regulating valve, without requiring an additional fuel-supply pump. The fuel diverted from the high-pressure reservoir is heated in the course of this, which quickly brings the injectors to their operating temperature and stabilizes their operation.




Other advantageous embodiments and modifications of the fuel injection device according to the invention are disclosed. In a simple manner, one embodiment permits the diversion connection to be switched between the low-pressure reservoir and the relief region, which makes it possible to avoid excessively intense heating of the injectors. Another embodiment permits a pressure increase in the low-pressure reservoir during starting of the engine and thus makes it possible for the engine to start reliably.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be better understood and further objects and advantages thereof will become more apparent from the ensuing detailed description of preferred embodiments taken in conjunction with the drawings, in which:





FIG. 1

shows a simplified, schematic depiction of a fuel injection device embodying the invention for use in an internal combustion engine; and





FIG. 2

shows an enlarged depiction of an injector of the fuel injection device.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a fuel injection device for an internal combustion engine of a motor vehicle. Preferably, the engine is an autoignition engine. The fuel injection device has a high-pressure pump


10


that supplies highly pressurized fuel to at least one high-pressure reservoir


12


. The high-pressure pump


10


is mechanically driven by the engine and has one or more pump elements, which are set into a stroke motion by a drive unit. A fuel-supply pump


16


supplies fuel from a fuel tank


14


to the suction side of the high-pressure pump


10


. The fuel-supply pump


16


can be driven by the high-pressure pump


10


or can be driven by the engine along with the high-pressure pump


10


. Alternatively, the fuel-supply pump


16


can also have its own drive unit, for example an electromotive drive unit.




The high-pressure reservoir


12


is connected to injectors


20


disposed in the cylinders of the engine. As shown in

FIG. 2

, the injectors


20


each have a fuel injection valve


22


and a control valve


24


. The control valve


24


has a piezoelectric actuator


26


, which is connected to an electronic control unit


28


that supplies it with an electric voltage. Depending on the voltage that activates it, the piezoelectric actuator


26


changes in length and thus, by means of a hydraulic pressure booster device


30


, produces a pressure change in an actuator pressure chamber


32


, which changes the position of a control valve element


34


. The fuel injection valve


22


has an injection valve element


36


that is acted on in an opening direction by the pressure prevailing in the high-pressure reservoir


12


and is acted on in a closing direction by the pressure prevailing in a control pressure chamber


38


and possibly also by a closing spring


40


. The injection valve element


36


controls at least one injection opening


42


. The control pressure chamber


38


is connected to the high-pressure reservoir


12


and, by means of a connection that is controlled by the control valve element


34


, is connected to a relief region, the function of which can be at least indirectly served by the fuel tank


14


. If the actuator


26


is not activated and is therefore without voltage, then the pressure in the actuator pressure chamber


32


is low so that the control valve element


34


breaks the connection of the control pressure chamber


38


to the relief region. Consequently, high pressure equivalent to that in the high-pressure reservoir


12


prevails in the control pressure chamber


38


, and the injection valve element


36


is held in its closed position so that no fuel injection takes place. If the control unit


28


applies an electric voltage to the actuator


26


, then the pressure in the actuator pressure chamber


32


increases so that the control valve element


34


opens the connection of the control pressure chamber


38


to the relief region. This allows fuel to flow out of the control pressure chamber


38


so that the pressure drops and the injection valve element


36


moves in the opening direction so that a fuel injection occurs.




The hydraulic pressure booster devices


30


of the injectors


20


are connected to a common low-pressure reservoir


50


. A pressure holding valve


52


maintains a predetermined pressure in the low-pressure reservoir


50


, for example between 5 and 20 bar. If the predetermined pressure is exceeded, then the pressure holding valve


52


opens and allows fuel to flow out of the low-pressure reservoir


50


, for example at least indirectly into the fuel tank


14


, which functions as a relief region. It is possible for the fuel that is diverted from the control pressure chamber


38


by means of the control valve element when the control valve


24


is open to be conveyed into the low-pressure reservoir


50


that functions as a relief region. Each connection of a pressure booster devices


30


to the low-pressure reservoir


50


contains a check valve


54


that opens toward the pressure booster device


30


, which permits the pressure booster device


30


to be filled from the low-pressure reservoir


50


, but does not permit any fuel to flow out of the pressure booster device


30


into the low-pressure reservoir


50


. The low-pressure reservoir


50


assures that the pressure booster devices


30


are filled with fuel and consequently assures that the injectors function properly.




The fuel injection device also has a pressure regulating valve


60


that can regulate the pressure in the high-pressure reservoir


12


. The pressure regulating valve


60


can divert fuel from the high-pressure reservoir


12


, which reduces the pressure in the high-pressure reservoir


12


. The pressure regulating valve


60


can be embodied as an electrically actuated valve, for example as a 2/2-way valve, which can be switched between a closed position in which no fuel can flow out of the high-pressure reservoir


12


and an open position in which fuel can flow out of the high-pressure reservoir


12


. The control unit


28


triggers the pressure regulating valve


60


, which permits a variable pressure to be adjusted in the high-pressure reservoir


12


. The pressure regulating valve


60


has a diversion connection


62


to a low-pressure region to which the fuel diverted from the high-pressure reservoir


12


is supplied. According to the invention, the diversion connection


62


of the pressure regulating valve


60


can be connected to the low-pressure reservoir


50


as a low-pressure region.




The diversion connection


62


of the pressure regulating valve


60


contains a reversing valve


64


, which can connect the diversion connection


62


with either the low-pressure reservoir


50


or a return


66


into the fuel tank


14


as a relief region. The reversing valve


64


can, for example, be switched in a temperature-dependent manner in such a way that when the fuel temperature is below a limit temperature, the diversion connection


62


is connected to the low-pressure reservoir


50


and when the fuel temperature is above the limit temperature, the diversion connection


62


is connected to the return


66


to the fuel tank


14


. The reversing valve


64


can have a switch element


68


in contact with the fuel, which changes shape depending on the fuel temperature and thus executes the switch. The switch element


68


can, for example, be comprised of bimetal, which in the event of a temperature change, produces the shape change due to the differing expansion coefficients of the two different metals.




A reliable function of the injectors


20


requires a complete filling of their hydraulic pressure booster devices


30


, which is assured through their connection to the low-pressure reservoir


50


. The fuel quantity diverted by the pressure regulating valve


60


makes it possible to fill the low-pressure reservoir


50


with fuel. During the starting of the engine, it is possible for the control unit


28


to trigger the pressure regulating valve


60


in such a way that it permits fuel to flow out of the high-pressure reservoir


12


, which fuel is supplied to the low-pressure reservoir


50


and generates the necessary low pressure there, thus assuring a filling of the hydraulic pressure booster devices


30


of the injectors


20


. This makes it possible for the engine to start reliably even if the fuel tank


14


has previously been completely emptied or if the engine is being started while hot. In addition, the fuel diverted from the high-pressure reservoir


12


can initially achieve a heating of the injectors


20


so that they quickly reach a stable operating temperature. The reversing valve


64


prevents an excessively intense heating of the injectors


20


by connecting the diversion connection


62


of the pressure regulating valve


60


directly to the return


66


when the fuel temperature is high so that no more fuel is supplied to the low-pressure reservoir. As a result, an additional fuel-supply pump is not required in order to fill the low-pressure reservoir


50


.




The foregoing relates to preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.



Claims
  • 1. A fuel injection device for an internal combustion engine, comprisingat least one high pressure reservoir (12) a high-pressure pump (10) that supplies highly pressurized fuel to the at least one high-pressure reservoir (12), a plurality of injectors (20) disposed in cylinders of the engine and connected to the high pressure reservoir, a common low-pressure reservoir (50) connected to said injectors (20), a pressure holding valve (52) maintaining a predetermined low pressure in the low-pressure reservoir (50), a pressure regulating valve (60) which can regulate the pressure in the high-pressure reservoir (12) by diverting fuel from the at least one high-pressure reservoir (12) through a diversion connection (62) into a low-pressure region, and the diversion connection (62) of the pressure regulating valve (60) connected to the low-pressure reservoir (50).
  • 2. A fuel injection device according to claim 1, further comprising a reversing valve (64) which can connect the diversion connection (62) of the pressure regulating valve (60) with either the low-pressure reservoir (50) or a relief region (66, 14).
  • 3. The fuel injection device according to claim 2, wherein the reversing valve (64) is switched depending on the temperature of the fuel in such a way that at a low fuel temperature, the diversion connection (62) of the pressure regulating valve (60) is connected to the low-pressure reservoir (50) and at a high fuel temperature, the diversion connection (62) of the pressure regulating valve (60) is connected to the relief region (66, 14).
  • 4. The fuel injection device according to claim 3, wherein the reversing valve (64) has a switch element (68) in contact with the fuel, which switch element changes shape depending on the temperature and thus executes the switch.
  • 5. The fuel injection device according to claim 1, wherein during starting of the engine, the pressure regulating valve (60) is triggered in such a way that it diverts fuel from the high-pressure reservoir (12), and the diversion connection (62) of the pressure regulating valve (60) is connected to the low-pressure reservoir (50).
  • 6. The fuel injection device according to claim 2, wherein during starting of the engine, the pressure regulating valve (60) is triggered in such a way that it diverts fuel from the high-pressure reservoir (12), and the diversion connection (62) of the pressure regulating valve (60) is connected to the low-pressure reservoir (50).
  • 7. The fuel injection device according to claim 3, wherein during starting of the engine, the pressure regulating valve (60) is triggered in such a way that it diverts fuel from the high-pressure reservoir (12), and the diversion connection (62) of the pressure regulating valve (60) is connected to the low-pressure reservoir (50).
  • 8. The fuel injection device according to claim 4, wherein during starting of the engine, the pressure regulating valve (60) is triggered in such a way that it diverts fuel from the high-pressure reservoir (12), and the diversion connection (62) of the pressure regulating valve (60) is connected to the low-pressure reservoir (50).
  • 9. The fuel injection device according to claim 1, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 10. The fuel injection device according to claim 2, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 11. The fuel injection device according to claim 3, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 12. The fuel injection device according to claim 4, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 13. The fuel injection device according to claim 5, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 14. The fuel injection device according to claim 6, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 15. The fuel injection device according to claim 7, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
  • 16. The fuel injection device according to claim 8, wherein each of the injectors (20) comprises a fuel injection valve (22) with a control valve (24) that controls it, when the control valve (24) comprise a piezoelectric actuator (26) and a hydraulic pressure booster device (30) associated with it, and wherein the hydraulic pressure booster device (30) is connected to the low-pressure reservoir (50) and is filled from this low-pressure reservoir (50).
Priority Claims (1)
Number Date Country Kind
102 18 024 Apr 2002 DE
US Referenced Citations (7)
Number Name Date Kind
3507263 Long Apr 1970 A
4142497 Long Mar 1979 A
6092509 Tanabe et al. Jul 2000 A
6112721 Kouketsu et al. Sep 2000 A
6378498 Kohketsu et al. Apr 2002 B2
6615807 Rembold et al. Sep 2003 B2
6684856 Tanabe et al. Feb 2004 B2
Foreign Referenced Citations (1)
Number Date Country
19941770 Mar 2001 DE