This invention relates to a fuel injection pump, and particularly a fuel injection pump suitable for use with a compression-ignition internal combustion engine.
As shown in
In use, the cam member drives the plunger 8 via the drive arrangement 12 on a pumping stroke during which fuel within the chamber 30 is pressurised. When the pressure of fuel within the pumping chamber 30 reaches a predetermined pressure, the outlet valve 28 opens to permit pressurised fuel to flow through the outlet valve 28. Although not shown in
As the cam member rotates further, the pumping plunger 8 passes a top dead centre position and thus commences a return stroke under the force of the spring 17. During the return stroke, fuel is permitted to fill the pumping chamber 30 through a fill/spill port 32 which is connected to a source of fuel at a relatively low pressure.
In order to vary the delivery volume of the fuel pump 2, the pumping plunger 8 is provided with a control arm 40 which extends radially away from the approximate mid point of the plunger 8. Angular movement of the control arm 40 varies the angular position of the pumping plunger 8.
In use, the control arm 40 engages a fuel delivery rack (not shown) via a control pin 42 that depends downwardly from a radially outer end of the control arm 40. The position of the fuel delivery rack is determined by the engine governor and the rack, in turn, acts on the control arm 40 to cause radial movement of the pumping plunger 8 about its longitudinal axis. The radial position of the pumping plunger 8 determines the point of the pumping stoke that a spill helix 41 (not shown on
Typically, a plurality of such fuel pumps 2 are installed into the cylinder block of an engine, one per cylinder. In order for the engine to run smoothly, the pumps 2 must be installed with the control arms 40 located in exact positions corresponding to a predetermined delivery setting, hereafter referred to the “reference position”.
Due to production tolerances of the components of the fuel pump 2, each fuel pump 2 provides a given delivery volume with the pumping plunger 8 in a slightly different relative angular position. Thus, each fuel pump 2 is subject to a calibration process during manufacture in which the control arm 40 of each pump 2 is set into the correct position to provide a desired delivery at a given speed defined by a customer, for example an engine manufacturer. Once calibrated, the control arm 40 is locked into its reference position by a locking pin 44 associated with the pump. The locking pin 44 is received within a longitudinally extending bore 46 provided in the pump housing 4 that is approximately parallel to the longitudinal axis of the fuel pump 2.
As can be observed in
A problem with the above described arrangement is that due to assembly requirements, and the need to support the locking pin 44 along its length, the pump housing 4 is required to be manufactured with a lower portion 50 which is eccentric to an upper portion 52 of the pump housing 4, i.e. axially offset. The process of machining the pump housing 4 to include eccentrically disposed upper and lower portions is complicated and, therefore, expensive. Consequently, it is desirable to provide a fuel injection pump that confers the same advantages and packaging profile as the fuel pump of
It is against the above background that the invention provides a fuel injection pump comprising a pump housing and a pumping arrangement associated with the pump housing wherein the pumping arrangement includes a plunger and a plunger drive arrangement, the plunger having a first end reciprocably received within a plunger bore provided in the pump housing and a second end coupled to the plunger drive arrangement. Further, the fuel injection pump is provided with a biasing spring having first and second spring ends, the first spring end coupled to a spring plate member associated with the pump housing and the second spring end coupled to the plunger drive arrangement. The pump housing includes first and second portions aligned on a common axis, the upper portion including a second bore in which at least an upper portion of a locking pin is received and wherein the spring plate member defines a support arrangement for supporting a lower end portion of the locking pin.
The invention confers a significant advantage in terms of manufacturing effort and the costs associated therewith. By virtue of the invention, the requirement to manufacture an eccentrically disposed lower end housing portion is avoided since an arrangement is provided to support the lower end of the locking pin on the spring plate.
An importance difference between the fuel injection pump of the invention and the prior art pump as described above with reference to
In order to permit control of the fuel delivery volume of the fuel injection pump, the pumping plunger preferably includes a radially extending control arm, which is moveable back and forth to cause the pumping plunger to move angularly within its bore. The control arm is set to a predetermined reference position to provide the required fuel pump delivery setting.
In the preferred embodiment of the invention, the spring plate member takes the form of first and second axially spaced concentric annular members, each of which defines a respective aperture. Preferably, each aperture is centrally disposed and of circular form.
One of said apertures preferably has substantially the same diameter as the second housing portion so as to define a press fit therewith. This feature thus enables the spring plate member to be attached to the pump housing. Conversely, the aperture of the other annular member is smaller, having substantially the same diameter as the pumping plunger, so as to allow the plunger to pass slidably therethrough.
Preferably, the spring plate member includes a lateral slot defined between the first and second annular members through which the control arm of the pumping plunger extends. The slot therefore serves to guide angular movement of the control arm.
Although the spring plate member may be manufactured as a multi-part assembly, preferably it is a one-piece cast, or milled, component such that the first and second annular members are joined by an integral semi-circular wall.
In the preferred embodiment, the support arrangement is a further aperture provided in the spring plate member. Preferably the further aperture is formed on a rim of one of the annular members, the dimension of the aperture being selected such that the lower end portion of the locking pin may be inserted and retracted. Preferably, the aperture is formed on a lobed region of one of the annular members.
From a second aspect, the invention provides a spring plate member for use with a fuel injection pump as described above. It will be appreciated that preferred and/or optional features of the fuel injection pump of the first aspect of the invention may also be incorporated within the spring plate member of the second aspect of the invention, alone or in appropriate combination.
Reference has already been made to
The pump housing 102 has a generally tubular configuration and the two regions 104, 108 are separated by a shoulder 109. The pump housing 102 further includes a longitudinal through-bore 112 extending along its longitudinal axis ‘A’ which defines an opening at each end of the pump housing 102. It should be mentioned at this point that the terms ‘upper’ and ‘lower’ are used with reference to the orientation of the fuel injection pump 100 as shown in the drawings and, as such, are not intended to limit the fuel injection pump 100 to a particular orientation.
At an upper face of the head region 104, the bore 112 widens to define a cup shaped recess 114 that screw-threadingly receives a lower end of the outlet valve arrangement 106. The outlet valve arrangement 106 includes a pump outlet 116 which is connectable to a fluid conduit for the purposes of conveying pressurised fuel to an associated fuel injector (neither the fluid conduit nor the fuel injector are shown in
The pumping arrangement 110 includes a pumping plunger 120, a portion of which is received within the pump housing bore 112 such that a pumping chamber 122 is defined within the bore 112 between an upper end of the pumping plunger 120 and a lower end of the outlet valve arrangement 106. The pumping plunger 120 defines a sliding clearance with the bore 112 such that it is able to reciprocate back and forth.
The pumping arrangement 110 also includes pump drive means 124 for driving the pumping plunger 120 in a reciprocating manner. The pump drive means 124 includes a tappet body 126 which is coupled to the lower end of the pumping plunger 120 and which defines a downwardly depending arch 128 shaped to receive a cam roller 130. Although not shown in the drawings, in use, the cam roller 130 is arranged to contact an engine-driven cam. As is known in the art, the engine driven cam provides a lobed cam surface that the cam roller 130 rides over as the cam rotates, to cause the pumping plunger 120 to reciprocate within the bore 112.
In use, the pumping plunger 120 is driven on a pumping stroke during which fuel within the pumping chamber 122 is pressurised. When the pressure of fuel within the pumping chamber 122 reaches a predetermined pressure, the outlet valve 106 activates to permit pressurised fuel to flow through the pump outlet 116. Control over the fuel delivery quantity is determined by means of the effective pumping stroke, as described previously with reference to
In order to assist the pumping plunger 120 to perform a return stroke following a pumping stroke, the pump drive means 124 includes a plunger biasing means in the form of a helical spring 132 received over the pumping plunger 120 such that it is disposed between the pump housing 102 and the tappet body 126. An upper end 132a of the spring 132 abuts a spring plate member 140 attached to a lower end of the neck region 108 of the pump housing 102 and a lower end 132b of the spring 132 abuts the tappet body 126. It should be appreciated that although the spring 132 is shown abutting the spring plate member 140 and the neck region 108 in
In order to vary the delivery volume of the fuel pump 100, the pumping plunger 120 is provided with a control arm 143 which extends radially away from an approximate mid-point of the plunger 120. A control pin 144 extends downwardly from the control arm 143 and serves to engage with a fuel delivery rack (not shown in
Referring to the pump housing 102 in more detail, the head region 104 is provided with an outwardly projecting flange 150 at its uppermost end that serves to abut against a peripheral edge of a pocket formed in an engine cylinder block into which the head region 104 is received, in use (the engine cylinder block and the pocket are not shown in
The head region 104 also includes a second through-bore 156 that is offset from the longitudinal axis A such that it extends approximately parallel thereto. A locking pin 158 is received by the bore 156 such that a lower portion of the locking pin 158 protrudes out of a lower bore opening defined in the shoulder 109. The protruding locking pin 158 extends adjacent the neck region 108 to terminate substantially in line with the lower end thereof. An upper end of the locking pin 158 extends from an upper bore opening defined in the upper face of the head region 104 and permits access to the locking pin 158 for insertion and removal.
It should be appreciated that the neck region 108 of the pump housing 102 is in coaxial alignment with the head region 104, along the longitudinal axis A. Put another way, the neck region 108 is concentrically disposed relative to the head region 104, thus sharing a common axis. This is to be compared with the known fuel pump 2 in
Due to the concentric alignment of the head and neck regions 104, 108, the lower portion of the locking pin 158 is not guided by the pump housing 102 itself. However, to compensate for this, the spring plate member 140 is provided with support means for supporting, or guiding, the lower end of the locking pin 158.
Referring also to
The upper annular member 160a is provided with a central circular aperture 164 having a diameter that substantially corresponds to the diameter of the neck region 108 of the pump housing 102 such that the spring plate member 140 defines a press fit with the lower end of the neck region 108. It should be noted that although the aperture 164 is circular in this embodiment, this is only so that the aperture 164 is able to accommodate the lower end of the neck region 108, which is also circular. Accordingly, the aperture 164 could adopt another shape, if required, to accommodate a differently shaped neck region 108.
The lower annular member 160b is also provided with a central circular aperture 166, but which is smaller than the aperture 164, such that its diameter is a little larger than that of the pumping plunger 120. As a result, when the spring plate member 140 is press fitted onto the neck region 108 of the pump housing 102, the plunger 120 passes through the aperture 166 with a sliding clearance.
The lower surface of the lower annular member 160b is provided with a downwardly depending annular projection 168, concentric with the aperture 166, which is received into the upper end 132a of the biasing spring 132. The projection 168 thus serves as a fixing point for the spring 132 to prevent lateral play between the spring 132 and the spring plate member 140.
The upper annular member 160a provides the support means for the locking pin 158 in the form of a lobe 170 that extends slightly outward from the otherwise circular rim of the upper annular member 160a. The lobe 170 is provided with an aperture 172 within which the lower end of the locking pin 158 is receivable such that the tip of the locking pin 158 can pass through the aperture 172 and engage the surface of the control arm 143.
By virtue of this arrangement, the locking pin 158 is securely supported against lateral movement, or bending, which avoids loss of calibration accuracy. Furthermore, supporting the locking pin 158 in this way enables the neck region 108 of the pump housing 102 to be formed concentric with the head region 104 which significantly reduces manufacturing complexity and, therefore, unit costs of the fuel pump 100.
It will be appreciated that various modifications may be made to the above described fuel pump without departing from the scope of the invention, as defined by the claims. For example, it is not essential for the spring plate member 140 to be press fit onto the neck region 108 of the pump housing 102. Instead, it may be secured thereon by other means: for example, by welding or by a set screw. Furthermore, although the spring plate member 140 has been described as being a unitary cast component, it should be appreciated that this need not be the case and the spring plate member 140 could be an assembly of two or more parts: for example, a cast, or milled, component for mating with the neck region 108, and for cooperating with the spring 132, and a sheet metal flange for providing support to the locking pin 158. In conclusion, this invention can be embodied in numerous forms. Reference should therefore be made to the appended claims, and not to the foregoing specific description, in determining the broadest scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
06251186 | Mar 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4721442 | Tanaka | Jan 1988 | A |
5171133 | Thomas | Dec 1992 | A |
6619186 | Duquette et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
19719265 | Nov 1998 | DE |
10140420 | Mar 2003 | DE |
0285194 | Oct 1988 | EP |
2170558 | Aug 1986 | GB |
2198793 | Jun 1988 | GB |
Number | Date | Country | |
---|---|---|---|
20070217926 A1 | Sep 2007 | US |