For a better understanding of the invention, a preferred embodiment is described herein, purely by way of example and with the aid of the attached drawings, wherein:
With reference to
The common rail 6 is supplied with high-pressure fuel by a high-pressure pump, designated as a whole by 7, via a delivery pipe 8. In turn, the high-pressure pump 7 is supplied by a low-pressure pump, for example an electric pump 9, via an intake pipe 10 of the pump 7. The electric pump 9 is in general set in the usual fuel tank 11, into which there gives out a pipe 12 for discharge of the fuel in excess of the injection system 1. A part of the fuel of the pipe 10 is sent, via a pressure regulator 15, to a crankcase 17 of the pump 7, for cooling and lubricating the mechanisms thereof, in a way in itself known.
The common rail 6 is moreover provided with a discharge solenoid valve 13 in communication with the discharge pipe 12. Each injector 5 is designed to inject, into the corresponding cylinder 3, a quantity of fuel that varies between a minimum value and a maximum value under the control of an electronic control unit 14, which can be formed by the usual microprocessor electronic control unit (ECU) for controlling the engine 2. The control unit 14 is designed to receive signals indicating the operating conditions of the engine 2, such as the position of the accelerator pedal and the r.p.m. of the driving shaft 4, which are generated by corresponding sensors (not shown), as well as the pressure of the fuel in the common rail 6, detected by a pressure sensor 16.
The control unit 14, by processing the received signals, by means of a purposely provided program controls the instant and duration of the actuation of the individual injectors 5, as well as opening and closing of the discharge solenoid valve 13. Consequently, the discharge pipe 12 conveys into the tank 11 both the discharge fuel of the injectors 5 and the possible fuel in excess in the common rail 6, discharged by the solenoid valve 13, as well as the fuel for cooling and lubrication coming from the crankcase 17 of the pump 7.
The high-pressure pump 7 of
According to the invention, set between the intake pipe 10 and the two intake valves 22, 22a is an accumulation volume 28 for the fuel to be taken in, which is provided with two outlet holes 29 and 29a (
In particular, the solenoid valve 31 is of the on-off type and can be formed by an electromagnetically controlled low-pressure fuel injector (
In the tank 11 (
According to the invention, the flowrate of the pump 7 is controlled exclusively by the injector 31, which is designed to be actuated in an asynchronous way with respect to the intake stroke of the pistons 21 of the pumping elements 18 and 18a. In particular, the injector 31, by means of the two nebulizer holes 36 and 36a (
In particular in
The injector 31 (
According to a first embodiment of the control unit 14, this latter is designed to control the injector 31 by means of control signals A of constant duration t1, the frequency of which is modulated. Consequently, in order to vary the amount of fuel to be pumped, the time interval B between the signals A is varied. According to another embodiment, the control unit 14 is designed to control the injector 31 by means of control signals C having a constant frequency (and hence, period), the duty-cycle of which is modulated. The constancy of the frequency is indicated in
The nebulizer holes 36 and 36a of the injector 31 have an outlet section, i.e., a section of effective passage, which is relatively small so as to enable the fuel metering before it is brought up to a high pressure by the pump 7. Preferably, said section of passage is such that, with the control at the maximum frequency or at the maximum duty-cycle of the control signal, the injector 31 will present a maximum instantaneous flowrate higher than the maximum instantaneous flowrate that can be taken in by each intake valve 22, 22a, said maximum flowrate being defined by the product of the maximum speed of the pumping element and the bore thereof. The maximum instantaneous flowrate of the injector 31 is chosen so as to be up to 20% more than the maximum instantaneous flowrate of each intake valve 22, 22a.
Advantageously, the section of passage of the nebulizer holes 36, 36a of the injector 31 is also such as to create a mean flowrate, during a pre-set time interval T, which is greater than the mean flowrate of fuel taken in through each intake valve 22, 22a. In
From the tests carried out, it has been found that the adjustment of the flowrate of the pump 7 enables an accurate metering of the fuel pumped upon actuation of each injector 5 via modulation of opening of the injector 31 controlled by the control unit 14. In this way, the volume of the common rail 6 of the high-pressure fuel can be enormously reduced. It has moreover been found that, if the jets of fuel are directed, through the nebulizer holes 36, 36a, towards the corresponding intake valves 22, 22a, the phenomenon of cross talk of pressure between the two valves 22, 22a is prevented even in conditions of minimum requirement of fuel.
According to a variant (not illustrated), the high-pressure pump 7 can be provided with three pumping elements 18 arranged in a star configuration and actuated by a common eccentric cam. In this case, the accumulation volume 28 (
According to another variant of the invention, the pump 7 can be formed by four pumping elements 18, and the accumulation volume 28 can have four corresponding outlet holes 29, whilst the injector 31 is designed to generate four jets of fuel directed towards said outlet holes. The four pumping elements 18 can be grouped into two sets, possibly arranged at an angle between one another, with respect to the shaft 27 of the pump 7. In this case, actuation of the pumping elements 18 is phased in such a way that the intake stroke of a pumping element 18 of one set alternates with that of a pumping element 18 of the other set. The injector 31 can then be provided only with just two nebulizer holes 36, 36a, as in
From what has been seen above the advantages of the injection system according to the invention with respect to the known art emerge clearly. In particular, the fuel metering is advantageously made by the injector 31 on fuel at low pressure, instead of by the pumping elements 18. Consequently, having sized appropriately the accumulation volume 28, i.e., with a value similar to that of the minimum volume of fuel required, even in the conditions of minimum flowrate required by the engine, in the volume 28 a pressure sufficient to enable opening of the valves 22 and 22a will always be obtained. With the asynchronous control of the injector 31, the need for constraining actuation of the injector 31 to the position of the piston 21 for control of metering is eliminated. In addition, the injector 31 is controlled at a frequency independent of the frequency of the intake strokes of the pump 7. Finally, since the injector 31 is of the on-off type, it is simpler than the proportional solenoid valves used in known systems so that the system according to the invention presents a very contained cost.
It is understood that various modifications and improvements can be made to the injection system having the high-pressure pump and the regulation device described above without departing from the scope of the ensuing claims. For example, it is possible to eliminate the usual motion transmission device between the driving shaft 4 and the shaft 27 of the high-pressure pump 7, which can thus be turned at a rate independent of that of the driving shaft 4. Also the solenoid discharge valve 13 of the fuel from the common rail 6 can be eliminated.
Number | Date | Country | Kind |
---|---|---|---|
06425394.1 | Jun 2006 | EP | regional |