This application is a 35 USC 371 application of PCT/DE 02/04075 filed on Nov. 2, 2002.
1. Field of the Invention
The invention is directed to an improved fuel injection system for an internal combustion engine.
2. Description of the Prior Art
One fuel injection system of the type with which this invention is concerned is known from European Patent Disclosure EP 0 987 431 A2. For each cylinder of the engine, this fuel injection system has one high-pressure fuel pump and one fuel injection valve communicating with it. The high-pressure fuel pump has a pump piston, which defines a pump work chamber and is driven in a reciprocating motion by the engine. The fuel injection valve has a pressure chamber communicating with the pump work chamber and also has an injection valve member, by which at least one injection opening is controlled and which is movable by the pressure prevailing in the pressure chamber in the opening direction, counter to a closing force, to uncover the at least one injection opening. A first electrically actuated control valve is provided, by which a connection of the pump work chamber to a relief chamber is controlled. A second electrically actuated control valve is also provided, by which a connection of a control pressure chamber to a relief chamber is controlled. The control pressure chamber communicates with the pump work chamber via a throttle restriction. The control pressure chamber is defined by a control piston, which is braced on the injection valve member and is urged in the closing direction of the injection valve member by the pressure prevailing in the control pressure chamber. For a fuel injection, the first control valve is closed and the second control valve is opened, so that high pressure cannot build up in the control pressure chamber, and the fuel injection valve can open. With the second control valve open, however, fuel flows out of the pump work chamber via the control pressure chamber, so that of the fuel quantity pumped by the pump piston, the fuel quantity that is available for injection is reduced, and the pressure available for the injection is also reduced. As a consequence, the efficiency of the fuel injection system is not optimal.
The fuel injection system of the invention has the advantage over the prior art that when the second control valve is open for the fuel injection and the fuel injection valve is thus also open, only a small flow cross section from the control pressure chamber to the relief chamber is uncovered, and thus only a small fuel quantity flows out; as a result, the available pressure for the injection and the efficiency of the fuel injection system are enhanced. At the onset or end of the fuel injection, fast opening and closure of the fuel injection valve is moreover achieved, which is made possible by a fast pressure reduction or pressure buildup, occurring because of the variable flow cross section, in the control pressure chamber upon opening and closure of the second control valve.
Advantageous features and refinements of the fuel injection system of the invention are disclosed. One embodiment makes the control of the flow cross section possible in a simple way. Another embodiment enables a simple formation of the bypass connection. A further embodiment makes a simple formation of the bypass connection possible that is furthermore not vulnerable to possible soiling, since when the fuel injection valve is closed the groove is open, and dirt particles can accordingly not stick in it.
The invention will be more fully described herein below in conjunction with the drawings, in which:
In
The fuel injection valve 12 has a valve body 26, which is connected to the pump body 14 and can be embodied in multiple parts, and in which an injection valve member 28 is guided longitudinally displaceably in a bore 30. The valve body 26, in its end region toward the combustion chamber of the cylinder of the engine, has at least one and preferably a plurality of injection openings 32. The injection valve member 28, in its end region toward the combustion chamber, has a sealing face 34, which for instance is approximately conical, and which cooperates with a valve seat 36 embodied in the valve body 26, in its end region toward the combustion chamber; injection openings 32 lead away from the valve seat or downstream of it. In the valve body 26, between the injection valve member 28 and the bore 30, there is an annular chamber 38 toward the valve seat 36; the annular chamber, in its end region remote from the valve seat 36, changes over as a result of a radial enlargement of the bore 30 into a pressure chamber 40 surrounding the injection valve member 28. At the level of the pressure chamber 40, as a result of a cross-sectional reduction, the injection valve member 28 has a pressure shoulder 42. The end of the injection valve member 28 remote from the combustion chamber is engaged by a prestressed closing spring 44, by which the injection valve member 28 is pressed toward the valve seat 36. The closing spring 44 is disposed in a spring chamber 46 of the valve body 26 that adjoins the bore 30.
The spring chamber 46 is adjoined, on its end remote from the bore 30, in the valve body 26 by a further bore 48, in which a control piston 50 that is connected to the injection valve member 28 is guided tightly. The bore 48 forms a control pressure chamber 52, which is defined by the control piston 50, as a movable wall. Via a piston rod 51 of smaller diameter than the control piston, the control piston 50 is braced on the injection valve member 28 and may be joined to the injection valve member 28. The control piston 50 may be embodied in one piece with the injection valve member 28, but for reasons of assembly it is preferably joined as a separate part to the injection valve member 28.
From the pump work chamber 22, according to
Between the pump body 14 of the high-pressure fuel pump 10 and the valve body 26 of the fuel injection valve 12, a shim 54 is disposed that forms a boundary of the control pressure chamber 52, on the side thereof remote from the injection valve member 28. The face 53 of the shim 54 defining the control pressure chamber 52 is disposed at least approximately perpendicular to the longitudinal axis 49 of the control piston 50. The conduit 62 from the conduit 60 to the control pressure chamber 52 is embodied in the shim 54, and the throttle restriction 63 is embodied as a throttle bore in the shim 54. The throttle bore 63 discharges into a peripheral region of the control pressure chamber 52, offset from the longitudinal axis 49 of the control piston 50. In the shim 54, there is a bore 55, which forms part of the connection 64 of the control pressure chamber 52 to the relief chamber 24.
As shown in
In a version of the fuel injection system shown in
When the fuel injection valve 12 is open, the injection valve member 28 is in an open position, in which it is spaced apart with its sealing face 34 from the valve seat 36 and uncovers the injection openings 32. The control piston 50 is correspondingly then in a reciprocating position, in which it rests with its sealing face 57 on the face 53 of the shim 54, as shown in
In a modified version of the fuel injection system shown in
The cross section of the throttle bore 63 in the shim 54 and of the throttle bore 80 or of the throttle groove 82 in the control piston 50 are adapted to one another in a suitable way for optimal function of the fuel injection system.
The function of the fuel injection system will now be explained. In the intake stroke of the pump piston 18, fuel is supplied to it from the fuel tank 24. In the pumping stroke of the pump piston 18, the fuel injection begins with a preinjection, in which the first control valve 68 is closed by the control unit 72, so that the pump work chamber 22 is disconnected from the relief chamber 24. The second control valve 70 is moreover opened by the control unit 72, so that the control pressure chamber 52 communicates with the relief chamber 24. In that case, high pressure cannot build up in the control pressure chamber 52, since the control pressure chamber is relieved toward the relief chamber 24. When the pressure in the pump work chamber 22 and thus in the pressure chamber 40 of the fuel injection valve 12 is so high that the pressure force exerted by it on the injection valve member 28 is greater than the sum of the force of the closing spring 44 and the pressure force exerted by the residual pressure in the control pressure chamber 52 on the control piston 50, then the injection valve member 28 moves in the opening direction 29 and uncovers the at least one injection opening 32. In the process, the control piston assumes its reciprocating position shown in
To terminate the preinjection, the second control valve 70 is closed by the control unit, so that the control pressure chamber 52 is disconnected from the relief chamber 24. The first control valve 68 remains in its closed position. High pressure thus builds up in both the control pressure chamber 52 and the pump work chamber 22, so that a high pressure force acts in the closing direction on the control piston 50, and the injection valve member 28 is moved into its closing position.
For an ensuing main injection, the second control valve 70 is opened by the control unit 72. The fuel injection valve 12 then opens in response to the reduced pressure force on the control piston 50, and the injection valve member 28, via its maximum opening stroke, moves into its open position. In the opening motion of the injection valve member 28, the large flow cross section across the primary connection 84 is first uncovered by the control piston 50, until the injection valve member 28 is opened with its maximum opening stroke, and the control piston 50 rests with its sealing face 57 on the face 53 of the shim 54 and closes the primary connection 84, and now only the bypass connection is uncovered via the throttle bore 80 or the throttle groove 82. As a result, faster opening of the fuel injection valve 12 is made possible. Once the fuel injection valve 12 is fully open, then via the throttle bore 63 and the throttle bore 80 or the throttle groove 82, now only a slight fuel quantity can flow away to the relief chamber 24, so that only a small portion of the fuel pumped by the pump piston 18 is unavailable for the injection.
To terminate the main injection, the second control valve 70 is put in its closed switching position by the control unit 72, so that the control pressure chamber 52 is disconnected from the relief chamber 24, and high pressure builds up in it, and via the force exerted on the control piston 50, the fuel injection valve 12 is closed. In the closing motion of the injection valve member 28, by means of the control piston 50, the primary connection 84 having the large flow cross section is uncovered, so that the pressure in the control pressure chamber 52 rapidly rises, and a high pressure force acts on the control piston 50, so that the fuel injection valve 12 closes quickly. For a postinjection of fuel, the second control valve 70 is opened once again by the control unit 72, so that as a consequence of the reduced pressure in the control pressure chamber 52, the fuel injection valve 12 opens. For terminating the postinjection, the second control valve 70 is closed and/or the first control valve 68 is opened.
The foregoing relates to preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101 60 263 | Dec 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/04075 | 11/2/2002 | WO | 00 | 1/26/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/050408 | 6/19/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5826562 | Chen et al. | Oct 1998 | A |
5860597 | Tarr | Jan 1999 | A |
6168132 | Frank et al. | Jan 2001 | B1 |
6494383 | Augustin | Dec 2002 | B2 |
6502555 | Harcombe et al. | Jan 2003 | B1 |
6631853 | Lenk et al. | Oct 2003 | B2 |
6758417 | Buck | Jul 2004 | B2 |
6779741 | Boehland | Aug 2004 | B2 |
6789743 | Baranowski et al. | Sep 2004 | B2 |
Number | Date | Country |
---|---|---|
0 987 431 | Mar 2000 | EP |
1 088 985 | Apr 2001 | EP |
1088985 | Apr 2001 | EP |
WO 01 14712 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040123840 A1 | Jul 2004 | US |