Embodiments of the present invention will now be described, by way of example only, with reference to the following drawings, in which:
The present invention is directed to a fuel injection system having a variable pressure fuel pump including electronic engine management, fuel pressurization through a variable DC brushless motor fuel pump, and an injector orifice. The system preferably has the ability to provide automatic mixture control at various atmospheric conditions, the system including barometric pressure and input temperature feedback sensors. According to some embodiments, the system is miniaturized for use in small engine platforms. Rather than miniaturizing an automotive style injector that relies on an electric solenoid to pulse the amount of fuel into the engine by varying the pulse length of fuel flow at a constant pressure, the system of the invention varies the fuel pump pressure to vary the fuel flow rate. Such a system may be more easily and inexpensively miniaturized for use in small engines. Additionally, a more reliable and more efficient propulsion system can be created by incorporating feedback regarding engine health and present atmospheric conditions.
Referring to
According to the invention, the fuel injection system 100 further comprises a plurality of sensors, including, but not limited to: (1) an engine speed sensor (RPM); (2) an intake air temperature sensor (IAT); (3) a cylinder head temperature sensor (CHT); and (4) a barometric pressure sensor (BARO). Based upon the power setting and input conditions (i.e, sensor readings), the ECU 110 determines the required duty cycle of the variable DC brushless motor fuel pump 120 to produce the required pressure and fuel flow to the fuel injector 130.
The hardware required to satisfy the fuel injection system 100 of the invention is fewer than that of an automotive constant pressure, variable fuel pulse width injection system. Specifically, a conventional automotive fuel injector system typically includes a DC brushed fuel pump, a fuel pressure regulator, a fuel return line, solenoid fuel injectors, a throttle position sensor, a manifold air pressure sensor, an intake air temperature sensor, and an engine control unit. By contrast, the fuel injection system 100 described herein includes the variable duty cycle DC brushless motor fuel pump 120, the fuel injector 130, the intake air temperature sensor (IAT), the cylinder head temperature sensor (CHT), and the ECU 110. The conventional automotive system requires one or more solenoid driven fuel injectors that are fed a constant pressure supply of fuel that must be constantly regulated. The complexity and geometric constraints of the automotive injectors, fuel pumps, sensors and pressure regulators are much more costly and complex than that of the variable pump pressure fuel injection system 100. Additional benefits of the system 100 include a significant reduction in this size of the injector element (i.e., fuel injector 130), as well as the absence of a need for pressure regulators to regulate the fuel system 100.
Referring to
The ECU 110 may be configured to accommodate various fuel map compensations native to automotive fuel injection systems, including without limitation: (1) intake air temperature compensation; (2) system voltage compensation; and (3) cylinder head temperature compensation. As set forth hereinabove, the intake air temperature and cylinder head temperature as determined using the air temperature sensor (IAT) and the cylinder head temperature sensor (CHT), respectively. According to the invention, the fuel injection system 100 may be configured to adjust fuel mixture based upon changes in atmospheric air pressure. Specifically, the ECU 110 measures intake barometric pressure using the barometric pressure sensor (BARO). More particularly, the ECU commands an air pressure control to automatically compensate for variance in atmospheric pressure due to changes in altitude and climate.
The present invention has been described above in terms of presently preferred embodiments so that an understanding of the present invention can be conveyed. However, there are other embodiments not specifically described herein for which the present invention is applicable. Therefore, the present invention should not to be seen as limited to the forms shown, which is to be considered illustrative rather than restrictive.
Thus, it is seen that a fuel injection system having a variable pressure fuel pump is provided. One skilled in the art will appreciate that the present invention can be practiced by other than the various embodiments and preferred embodiments, which are presented in this description for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow. It is noted that equivalents for the particular embodiments discussed in this description may practice the invention as well. Therefore, the present invention should not be seen as limited to the forms shown, which is to be considered illustrative rather than restrictive.