The present invention relates to a fuel injection system for direct injection of fuel into a combustion chamber of an internal combustion engine.
Various embodiments of fuel injection systems are known from the prior art. For example, from German Patent Disclosure DE 101 40 797 A1, a fuel injection valve is known which has a compensation element for supporting the fuel injection valve in a cylinder head. The compensation element has lands on a ring that extend along a valve housing and on the end of which support segments are disposed. The support segments are embodied in the form of part of a circle, in order to ensure spacing apart between the fuel injection valve and the receiving bore in the cylinder head.
The fuel injection system according to the invention for direct injection of fuel into a combustion chamber of an internal combustion engine, having the characteristics of claim 1, has the advantage over the prior art that it enables a floating support of a fuel distributor line, such as a rail. The fuel injection system is constructed quite simply and can be furnished especially economically. In particular, the fuel injection system can compensate for tolerances between a fuel distributor line, the cylinder head, and the fuel injection valve and can ensure optimal positioning of the fuel injection valve in a receiving bore of the cylinder head. The injection system of the invention includes a compensation element for positional compensation and/or tolerance compensation, and a separate bracing element. The bracing element is disposed between the fuel injection valve and the cylinder head on a step of the receiving bore and has a play in the radial direction. The bracing element ensures bracing of the fuel injection valve in the axial direction of the fuel injection valve. The compensation element is disposed in the axial direction of the fuel injection valve between a first sealing element and a second seal. The first sealing element seals off between the fuel injection valve and the cylinder head, and the second seal seals off between the fuel injection valve and the fuel distributor line. By the combination according to the invention of the compensation element with the separate support element with radial play, a secure tolerance compensation can be made possible, and in a compensation event, the second seal is intended as a pivot point. This is possible because of the radial play of the bracing element. It should also be noted that it is understood that a plurality of fuel injection valves may also be provided, and the engine can also include a plurality of cylinders.
The dependent claims show preferred refinements of the invention.
Preferably, the compensation element is a sleeve with a fixation region and a plurality of elastic elements. The sleeve is provided in annular form and on an annular fixation region has a plurality of elastic elements. Preferably, the elastic elements are embodied as at least three radially outward-protruding hooks or lugs.
In an alternative embodiment of the present invention, the compensation element is a wave ring. The wave ring has a sinusoidal course, for instance, with protruding and recessed turning points that are arranged around an imaginary circle in order to form the ring.
In another preferred feature of the present invention, the compensation element includes a disk element, with a disk region and a collar disposed in the receiving bore in the cylinder head. The collar has a predetermined elasticity and is in contact with the fuel injection valve, which makes the positional and tolerance compensation possible.
In still another preferred feature of the present invention, the compensation element includes a plurality of ribs that are oriented in the axial direction of the fuel injection valve. The ribs are disposed between the fuel injection valve and the cylinder head, and they have an elasticity in order to make the compensation function possible. Preferably, the ribs are integrally injection-molded on the fuel injection valve or on the receiving bore in the cylinder head.
Especially preferably, the ribs are disposed on the fuel injection valve, and a play is provided between the ribs and the receiving bore in the cylinder head. The ribs may for instance be injection-molded in one piece with a housing component of the fuel injection valve.
Preferably, the compensation element is made from an elastic plastic or a sheet-metal material, in particular a spring sheet metal.
To ensure the greatest possible capability of a tolerance compensation, the compensation element is preferably disposed as close as possible to the first sealing element. Especially preferably, the first sealing element and the compensation element are disposed immediately adjacent one another, and contact between the two components is also possible. Especially preferably, the compensation element is disposed directly at the beginning of the receiving bore for the fuel injection valve in the cylinder head.
For especially great compensation for tolerances, a fixation with play in the radial direction on the cylinder head is preferably possible on a fixation element, such as a rail cup, that is provided on the cylinder head for fixation of the fuel distributor line. For the purpose of fixation, bores with a large diameter that make the radial play possible are for instance provided on the fixation element.
Especially preferably, the second sealing element is embodied as a Teflon ring. As a result, on the one hand the scaling function between the fuel injection valve and the receiving bore in the cylinder head can been ensured, and on the other, the Teflon ring can be securely used as a pivot point for a tolerance compensation without being damaged.
The fuel injection system of the invention can be used in both Otto engines and in Diesel engines. Especially the possibility, in multi-cylinder engines, of an unfavorable addition of production-caused tolerances or assembly tolerances can be compensated for in excellent fashion by the fuel injection system according to the invention.
Below, preferred exemplary embodiments of the invention will be described in detail in conjunction with the accompanying drawings. In the drawings:
Below, with reference to
The fuel injection system 1 further includes a first sealing element, a second sealing element 8, a compensation element 9, and a bracing ring 10. The first sealing element 7 seals between the fuel injection valve 3 and the cylinder head 5, on an end of the fuel injection valve 3 oriented toward the combustion chamber 2. The second sealing element 8 seals between the fuel injection valve 3 and the fuel distributor line 4, on an end of the fuel injection valve 3 oriented toward the fuel distributor line 4. The bracing ring 10 supports the fuel injection valve 3 in the axial direction X-X of the fuel valve on a step 6a of the receiving bore 6. Between the bracing ring 10 and the receiving bore 6, there is a play S2. The compensation element 9 is disposed on the fuel injection valve 3 in a region between the first sealing element 7 and the second sealing element 8, or more precisely in a region between the bracing ring 10 and the second sealing element 8.
The compensation element 9 can be seen in detail in
If in the assembled state stress were to occur because of production-dictated tolerances or assembly tolerances of the various individual components of the fuel injection system 1, it can be compensated for now by the arrangement of components according to the invention. Because of the play S2 of the fuel injection valve 3 in the region of the bracing ring 10 and the play S1 in the fastening of the distributor line cup 11 to the cylinder head 5, the fuel injection system 3 can rotate about a pivot point D, which is located in the vicinity of the first sealing element 7. Depending on existing stresses, a deformation occurs at the elastic elements 9b of the compensation element 9. Because the compensation element 9 is disposed in the vicinity of the fuel injection valve 3, tolerances in all directions can be compensated for. It is preferred that the compensation element 9 be disposed as close as possible to the edge of the receiving bore 6. Especially preferably, an upper face of the compensation element 9 is flush with a surface of the cylinder head 5. The bracing ring 10 furthermore supports the fuel injection valve 3 in the axial direction X-X, but because of the play S2, it also makes the rotation of the fuel injection valve 3 about the pivot point D possible for the sake of positional and tolerance compensation. Since separate sealing elements 7, 8 are used for sealing the fuel injection valve 2, the tightness at the fuel injection valve 3 can continue to be ensured without problems. To enable withstanding the highest possible loads, the first sealing element 7 is preferably a Teflon ring, with a predetermined height in the axial direction. According to the invention, the fuel injection system in its assembled state can thus be put into a neutral, force-free position, since positional and tolerance compensation is possible. As a result, injection valves that in particular are long in the axial direction X-X as well can be constructed, which because of their lever arm often exert a strong force on the fuel distributor line. The separate bracing ring 10 always ensures bracing of the fuel injection valve 3 on the cylinder head 5 in the axial direction X-X.
Below, with reference to
The difference between the fuel injection system of the second exemplary embodiment resides in a different compensation element. As can be seen from
As can be seen from
Number | Date | Country | Kind |
---|---|---|---|
10 2007 035 714.3 | Jul 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/57996 | 6/24/2008 | WO | 00 | 1/21/2010 |