The present invention relates to a fuel valve and fuel injector for an engine and preferably a 2-stroke marine engine. In particular the present invention relates to a fuel valve and fuel injector for a non-Newtonian fuel such as a slurry fuel or an emulsion fuel.
Current injection technology within diesel engines employs oil based Newtonian fuels derived from liquid hydrocarbon. This may include, but is not limited to conventional diesel, marine diesel oil, marine gas oil and heavy fuel oil.
In order for the fuel to burn the fuel needs to be pumped at high pressure into a chamber within the injector, also known as a fuel valve. Conventional fuel systems use a high-pressure pump and common rail technology to deliver high pressure fuel up to one thousand bar to the fuel injectors. A volume of fuel therefore is maintained at high pressure in conventional fuel systems. Conventional diesel engines employ pressure atomization of relatively low viscosity fuel with Newtonian properties.
For heavy fuel oils the fuel viscosity is controlled to 10-20 mPa·s by heating before it enters the engine's high pressure injection pumps. High pressure fuel is provided to the injection pumps at relatively high constant pressure by the feed pumps of the fuel system. In some conventional fuel systems a high-pressure pump and common rail technology is used to deliver high pressure fuel up to 1000 bar to the injectors. In other engines such as a marine common rail 4-stroke engine the pressure can be as high as 1500 bar. A volume of fuel therefore is maintained at high pressure.
It is known to replace the heavy fuel oil with a slurry fuel or an emulsion fuel which have significantly different properties compared to heavy fuel oils. The slurry fuel can be a carbonaceous aqueous slurry fuel. That is a suspension of carbon particles, such as coal or solidified bitumen, in water. An emulsion fuel can be an emulsion of liquid particles of hydrocarbon, such as bitumen and water. The carbonaceous aqueous slurry fuels can have a higher viscosity, have a non-Newtonian rheology and are more difficult to atomise. The solid carbon particles of the carbonaceous aqueous slurry fuels can have a tendency to deposit when the slurry fuel is not flowing.
The combustion, transportation, storage and utilization of these carbonaceous aqueous slurry fuels may cause a number of technical problems. The carbonaceous solid particles forming the slurry from settling in tanks and fuel lines, and in blocking smaller orifices of the fuel injection equipment both during engine operation and when stopped.
Experiments have shown that slurry fuels can change characteristics in terms of stability and rheology across pressure differentials. In some cases slurry fuels react negatively when the slurry fuel is exposed to a high pressure for extended periods of time. For example the slurry fuels can behave adversely to high shear or cavitation conditions such as experienced through pressure relief valves and throttling valves. It has been observed that the particles may precipitate out of solution and/or particles agglomerate at various positions in the fuel system. This means that conventional fuel injectors such as that shown in EP 3 070 322 may not work effectively or even at all with slurry fuels.
Known fuel injection systems using slurry fuels are disclosed in U.S. Pat. Nos. 4,782,794 and 5,056,469 where the slurry fuel is injected with a high pressure in the fuel injection system. A problem with the known fuel injection systems is that agglomeration and precipitation of the solid fuel component in the slurry fuel can occur anywhere in the fuel system. This degrades the susceptibility of atomisation of aqueous slurries. This can cause increased ignition delay and incomplete combustion and in turn can contribute to misfire of the engine, ring damage and reduction in engine longevity.
Embodiments of the present invention aim to address the aforementioned problems.
According to an aspect of the present invention there is a fuel supply valve for a slurry fuel injector valve comprising: a fuel inlet in fluid communication with a slurry fuel reservoir; a fuel outlet in fluid communication with a nozzle of the fuel injector valve; a pump chamber port in fluid communication with a pump chamber of the fuel injector valve; a valve gate moveable between a first position wherein the fuel inlet is in fluid communication along a first slurry fuel flow path with the pump chamber port and a second position wherein the fuel outlet is in fluid communication along a second slurry fuel flow path with the pump chamber port; wherein the valve gate is arranged to not substantially exert a force opposing a flow of the slurry fuel into the valve chamber when the valve gate moves between the second position and the first position and/or between the first position and the second position.
This means that the slurry fuel is exposed to a high pressure in the fuel injector valve. Elsewhere in the fuel system the slurry fuel is handled at a lower pressure and the slurry fuel is less likely to behave in unpredictable ways.
Preferably the pressure of the slurry fuel across the fuel supply valve is between 6 bar and 15 bar. This means that the slurry fuel is constantly at a low pressure.
Preferably the force for moving the valve gate between the first and second position and/or the second and first position is between 0N and 100N. By avoiding the slurry fuel having to work against a stiff spring in the fuel supply valve, the pressure of the slurry fuel can be lower. This avoids agglomeration of solid particles in a near the fuel supply valve.
Preferably the valve gate is rotatable between the first position and the second position. Preferably the valve gate comprises at least one pump chamber moveable between the first and second position. Preferably the valve gate comprises a plurality of pump chambers, each of the pump chambers arranged to be sequentially rotatable into the first and/or second positions. Preferably each pump chamber comprises a pump piston slidably mounted in the pump chamber and arranged to urge slurry fuel to the nozzle when the pump piston moves towards pump chamber port. Preferably each pump chamber is rotatably moveable to a third position wherein the pump chamber is aligned with a flushing fluid port. Preferably the valve gate is operable with a servo liquid from an engine of the fuel injector valve.
This means that the valve gate moves transversely with respect to the direction of the fluid flow. When the valve gate moves transversely with respect to the slurry flow, the forces exerted on the slurry fuel are minimised.
Preferably the valve gate is slidably moveable between the first and second positions. Preferably the valve gate comprises an inlet surface for engaging with a flow of slurry fuel from the fuel inlet and a chamber surface for engaging with slurry fuel in the pump chamber. Preferably the surface area of the chamber surface area is greater than the surface area of the inlet surface.
Preferably the valve gate is coupled to a spring for biasing the valve gate to the second position.
The sliding valve gate uses the pressure of the slurry fuel itself. In this way the slurry fuel pressure does not have to be raised to actuate the fuel supply valve.
Preferably the fuel supply valve comprises a sealing liquid conduit adjacent to the moveable valve gate. This prevents the hard wearing particles of the slurry fuel wearing and damaging the moveable parts of the fuel supply valve. The sealing liquid seals and lubricates the fuel supply valve.
In another aspect of the invention there is a fuel injector valve for a slurry fuel comprising: a housing and a pump chamber within the housing for receiving slurry fuel, wherein the pump chamber is selectively in fluid communication with a nozzle or a fuel inlet; a pump piston slidably mounted in the pump chamber and arranged to exert a force on the slurry fuel; an actuation piston coupled to the pump piston and arranged to transmit a force to the pump piston; and a fuel supply valve according to the first aspect for selectively coupling the pump chamber with the nozzle or the fuel inlet.
Preferably the fuel injector comprises a sealing liquid reservoir in fluid communication with the moveable valve gate wherein the sealing liquid is arranged to seal the moveable valve gate against a valve housing. Preferably the sealing liquid reservoir is in fluid communication with a valve nozzle for mixing the sealing liquid with the sealing liquid in the valve nozzle. Preferably the sealing liquid reservoir is in fluid communication with a needle valve seat in the valve nozzle.
Various other aspects and further embodiments are also described in the following detailed description and in the attached claims with reference to the accompanying drawings, in which:
In some embodiments, the engine 100 has one or more fuel injector valves 102. The engine 100 as shown in
In contrast to known fuel injectors, the fuel such as heavy fuel oil or diesel is replaced with a slurry fuel. The slurry fuel has different properties compared to heavy fuel oils or other oil based hydrocarbon fuels.
In some embodiments, the slurry fuel can be a carbonaceous aqueous slurry fuel. In some embodiments the slurry fuel is a micronized refined carbon (MRC) fuel. Alternatively the slurry fuel may be referred to as a coal and water mixture (CWM). That is a suspension of carbon particles, such as coal or solidified bitumen, in water. In other embodiments the fuel can be an emulsion of liquid particles of hydrocarbon, such as bitumen, and water. In yet further embodiments the slurry fuel comprises a solid fuel particulate component in a liquid solution or liquid fuel droplet component in a different liquid component.
The carbonaceous aqueous fuels slurry can have a higher viscosity, have a non-Newtonian rheology and are more difficult to atomise. The solid carbon particles of the carbonaceous aqueous slurry fuels can have a tendency to deposit when the slurry fuel is not flowing. Hereinafter, for the purposes of brevity the term slurry fuel will incorporate a carbonaceous aqueous slurry fuel, other slurry fuels and emulsion fuels.
The fuel injector valve 102 will now be discussed in more detail in reference to
A nozzle 108 is mounted on the first end 104 of the fuel injector valve 102. The housing 110 is provided with a sealing liquid inlet port 112 and an actuation liquid inlet port 114. The actuation liquid is for actuating the fuel injector valve 102 and urging the slurry fuel in the fuel injector valve 102 into a combustion chamber 300 (see
The sealing liquid is for lubricating and separating the slurry fuel from other parts of the fuel injector valve 102. The sealing liquid in some embodiments is sealing oil. The term sealing liquid will be used herein after to refer to a liquid that seals and lubricates parts of the fuel injector valve 102. The sealing liquid arrangement will be discussed in more detail below. In some embodiments the actuation liquid is also used for the sealing liquid and this will be discussed in further detail below with respect to the actuation liquid.
The housing 110 is provided with a fuel inlet port 116 for fluid communication with a first reservoir 118 of carbonaceous slurry fuel. The first reservoir 118 is a fuel tank which can be located remote from the fuel injector valve 102. The first reservoir 118 is in fluid communication with the fuel inlet port 116 by fuel lines 130.
Optionally, the fuel inlet port 116 may connect to one or more sources of fuel for example by means of a three-way valve 126 allowing the fuel injector valve 102 to switch between a primary source of fuel stored in the first reservoir 118 and a secondary source of fuel stored in a second reservoir 128. The second reservoir 128 is in fluid communication with the fuel inlet port 116 with the fuel lines 130. The second reservoir 128 is also a fuel tank which can be located remote from the fuel injector valve 102.
The primary and secondary sources of fuel may comprise different sources of fuel. In some embodiments the first reservoir 118 comprises a slurry fuel and the second reservoir 128 comprises a different fuel such as or a low sulphur hydrocarbon fuel system where the sulphur content is less than 0.1%, for example marine diesel oil (MDO). Alternative fuels such as heavy fuel oil (HFO) fuel system can be used. Alternatively the second reservoir 128 comprises the same type of fuel.
The fuel from the first and the second reservoir 118, 128 is pumped to the fuel inlet port 116 by one or more fuel pumps systems (not shown). The fuel pump pressurises the fuel in the first and second reservoirs 118, 128 and drives the fuel from the first and second reservoirs 118, 128 to the fuel injector valve 102. The different fuels may be pressurised at different pressures.
The second fuel reservoir 128 is not necessary, but provides additional resilience to the fuel system in case the engine 100 is required to burn a different type of fuel with different characteristics. For example the engine 100 can be switched from burning a slurry fuel to another type of fuel to reduce emissions in certain geographical areas or to flush the slurry fuel from the fuel system.
The fuel injector valve 102 may be operated using a fuel different from a slurry fuel prior to shut down of the engine 100 in order to flush the fuel injector valve 102. This means a fuel such as HDO or MDO, which do not contain carbonaceous solid particles can be used to flush the fuel pipes and other parts of the fuel system free from carbonaceous particles. In this way periodic maintenance of the fuel injector valve 102 can be carried out and deposition of particulates can be reduced and/or eliminated. However, once large amounts of the MRC fuel becomes solid once the MRC fuel may not flow, and it can be difficult to remove form the injector channels by flushing.
The fuel inlet port 116 connects to a pump chamber 120 in the valve housing 110 via a fuel supply valve 122. The fuel supply valve 122 will be discussed in further detail below. The pump chamber 120 is in fluid communication with the nozzle 108 via nozzle fuel conduit 124. The nozzle fuel conduit 124 extends longitudinally along the axis A-A. In some embodiments the nozzle fuel conduit 124 may comprise a plurality of nozzle fuel conduits 124 (not shown). A plurality of fuel nozzle conduits 124 is used to increase the flow rate of slurry fuel delivered to the nozzle 108. In some embodiments there are two nozzle fuel conduits 124 in fluid communication between the pump chamber 120 and the nozzle 108. This means that a slurry fuel that may have a lower fuel energy density can be provided in higher volumes at the nozzle 108.
The fuel nozzle 108 will now be discussed in more detail with respect to
In some embodiments the nozzle 108 is a separate element that is mounted to the first end 104 of the housing 110. In other embodiments, the nozzle 108 is integral with the housing 110. The nozzle 108 has one or more fuel outlet holes 140. The fuel outlet hole may be axially aligned with the axis A-A. Alternatively or additionally the nozzle 108 comprises a plurality of nozzle bores (not shown) that are radially and/or axially distributed over the nozzle 108.
The housing 110 of the fuel injector valve 102 comprises a longitudinal bore 132. The longitudinal bore 132 extends from the first end 104 of the fuel injector valve 102 towards the second end 106. The longitudinal bore 132 is axially aligned with the axis A-A.
A moveable valve needle 134 is mounted within the longitudinal bore 132. In some embodiments the moveable valve needle 134 is slidably received in the longitudinal bore 132. The moveable valve needle 134 is moveable between a closed position and an open position along the longitudinal axis A-A and the longitudinal axis of the moveable valve needle 134. The direction of movement of the moveable valve needle 134 is shown by the two headed arrow in
In the closed position a tip 136 of the moveable valve needle 134 abuts against a needle valve seat 138. In the closed position, the valve needle 134 rests on a needle valve seat 138 in the closed position. The moveable valve needle 134 is biased towards the closed position by a spring 142 (shown in
The needle fuel chamber 144 is in fluid communication with the nozzle fuel conduit 124. When the moveable valve needle 134 is in the opened position, the needle fuel chamber 144 is in fluid communication with a longitudinal nozzle bore 146. The longitudinal nozzle bore 146 is axially aligned with axis A-A and the longitudinal bore 132. This means that the slurry fuel can flow from the needle fuel chamber 144 to the longitudinal bore 146 when the moveable valve needle 134 is in the open position.
In contrast when the moveable valve needle 134 is in the closed position, the needle tip 136 is sealed against the needle valve seat 138 and the needle fuel chamber 144 is sealed off from the longitudinal nozzle bore 146. Accordingly when the moveable valve needle 134 is in the closed position, the slurry fuel cannot flow from the nozzle fuel conduit 124 and the needle fuel chamber 144 to the longitudinal nozzle bore 146.
Turning back to
The actuation liquid arrangement will now be discussed in further detail. A fuel injection piston 200 is provided in a first bore 202. The fuel injection piston 200 is substantially cylindrical and is located within a reciprocally shaped first bore 202. The fuel injection piston 200 and the first bore 202 are axially aligned with axis A-A. The fuel injection piston 200 is moveable within the first bore 202. The fuel injection piston is axially slidable within the first bore 202. A lower surface 204 of fuel injection piston 200 is adjacent to and in contact with the slurry fuel in the pump chamber 120. The fuel injection piston 200 is arranged to move within the first bore 202 and urge the slurry fuel towards the nozzle 108 via the nozzle fuel conduit 124. The functionality of the fuel injection piston 200 will be discussed in more detail further below.
The fuel injection piston 200 is coupled to an actuation piston 206. The fuel injection piston 200 and actuation piston 206 as shown in
In some embodiments the actuation piston 206 is provided in a second bore 208. In some embodiments the first bore 202 and the second bore 208 are the same. The actuation piston 206 and the second bore 208 are axially aligned with axis A-A. The actuation piston 206 is moveable within the second bore 208. The actuation piston 206 is axially slidable within the second bore 208. In some embodiments the actuation piston 206 and the fuel injection piston 200 are integral or mechanically coupled together. In other embodiments the actuation piston 206 can be remote from the fuel injection piston 200 such that the pistons 200, 206 are separate moveable elements.
An upper surface 210 of the actuation piston is adjacent to and in contact with an actuation liquid within an actuation chamber 212. The actuation liquid is part of a high pressure hydraulic system having an actuation liquid reservoir 216. The actuation chamber 212 is in fluid communication with the actuation liquid inlet port 114 via an actuation liquid supply conduit 214. The supply of the high pressure actuation liquid is controlled with an actuation control valve 218. The actuation control valve 218 selectively controls the flow of the actuation liquid to the actuation chamber 212. The reservoir of the actuation liquid 216 may be an existing source such as a common rail system or a cam-shaft shaft system for providing actuation liquid of high pulsating pressure. In this way the actuation control valve 218 controls when the high pressure actuation liquid enters the actuation chamber 212 and urges the fuel injection piston 200 towards the first end 104.
When the actuation piston 206 moves upwards towards the second end 106, then actuation liquid egresses from the actuation chamber 212 back to the actuation liquid reservoir 216 via a low pressure drain line (not shown). This means that the actuation liquid is recycled and reused for subsequent injection cycles.
In other embodiments the actuation system can be any suitable means for exerting a force on the fuel injection piston 200. In some embodiments the actuation liquid is also the sealing liquid. This means that there is no sealing liquid reservoir 220 and the sealing liquid is sealing liquid reservoir is also the actuation liquid reservoir 216. In one embodiment (not shown in
The fuel injection piston 200 is arranged to pressurise the slurry fuel in the pump chamber 120 by virtue of the high pressure actuation liquid exerting a high pressure on the actuation piston 206.
The slurry fuel contains hard wearing particles which can wear and damage the fuel injector valve 102. Accordingly a sealing arrangement is provided to seal the fuel system which contain the slurry fuel and from other parts of the fuel injection. Sealing liquid can be used to separate and isolate the slurry fuel as well as lubricate moving parts. The sealing liquid arrangement will be discussed in further detail in reference to
Coal-water slurry fuels typically contain no oil, whereby sealing and lubricating properties of coal-water slurry fuels are typically substandard or absent. Optionally in some embodiments a sealing liquid is provided for moving parts for lubrication purposes and for preventing migration of solid particles within the fuel injector valve 102. The sealing liquid can also prevent build-up of sludge and accumulation of carbonaceous particles in any deposits.
The sealing liquid is supplied from a sealing oil reservoir 220 to the sealing liquid inlet port 112 via a sealing control valve 222. The sealing liquid inlet port 112 is in fluid communication with a groove 224 on the fuel injection piston 200 via sealing piston conduit 226. The groove 224 is located around the outer peripheral cylindrical surface of the fuel injection piston 200. In some embodiments the groove 224 is a circumferential groove. In some embodiments there may be a plurality of circumferential grooves 224, each lubricating and sealing the fuel injection piston 200. The sealing liquid fills a clearance between the first and/or second bores 202, 208 in the housing 110 and the pump piston 200 and/or the actuation piston 206. This seals the clearance between the pump chamber 120 and the actuation liquid chamber 212.
By selecting the above clearance for the lower part of the pump piston 200 slightly larger than the clearance for the upper part of the pump piston 200 towards the first end 104 of the fuel injector valve 102, most of the sealing liquid flows through the clearance towards the pump chamber 120. Excess sealing liquid will mix with the slurry fuel in the pump chamber 120 and be combusted.
The sealing liquid inlet port 112 is also in fluid communication with at least one circumferential groove 228 around the moveable valve needle 134 via a nozzle sealing liquid conduit 230. The sealing arrangement around the nozzle 108 will be discussed in further detail with respect to
Turning back to
The circumferential grooves 228a, 228b, 228c, 228d may be rectangular or round faced turned into the moveable valve needle 134 on a face of the moveable valve needle 134 being in direct contact with the longitudinal bore 132.
The plurality of the circumferential grooves 228a, 228b, 228c, 228d is disposed in an intermediate portion 234 of the moveable valve needle 134. The intermediate portion 234 substantially coincides with the portion of the longitudinal bore 132 being closest to the needle fuel chamber 144. The circumferential grooves 228a, 228b, 228c, 228d are substantially equidistantly spaced over the intermediate portion 234.
The arrangement of providing the circumferential grooves 228a, 228b, 228c, 228d with sealing liquid has the effect that the moveable valve needle 134 is maintained at a central coaxial position in respect of the valve seat 138, thus the provision of sealing liquid in the clearance between the face of the moveable valve needle 134 and the longitudinal bore 132 facilitate that this clearance is occupied by incompressible sealing liquid and hence preventing the moveable valve needle 134 from deviating from a position unaligned with the longitudinal axis A-A.
Optionally to increase sealing between the moveable valve needle 134 and the longitudinal bore 132, the pressure of the sealing liquid can be sufficient to promote a flow of sealing liquid into the needle fuel chamber. In this way sealing liquid drains from the circumferential grooves 228a, 228b, 228c, 228d and on to the needle seat 138. This causes the sealing liquid to mix with the slurry fuel in the needle fuel chamber 144. The sealing liquid in some embodiments is a liquid hydrocarbon oil such as diesel oil that burns easier than the slurry fuel. According sealing liquid draining into the fuel chamber 144 can promote the combustion of the slurry fuel in the combustion chamber 300.
Turning to
Additionally or alternatively the additional conduit 700 is in fluid communication with the needle fuel chamber 144. The connection between the additional conduit 700 and the needle fuel chamber 144 is not shown. In this way the additional conduit connects the nozzle sealing liquid conduit 230 to the needle fuel chamber 144. This means that the nozzle sealing liquid conduit 230 provides sealing liquid to the needle valve seat 138 and/or the needle fuel chamber 144. Although one additional conduit 700 is shown in
As mentioned above, the sealing liquid is typically a lighter hydrocarbon which burns more easily than the slurry fuel. This means that the sealing liquid can be used as a pilot fuel to improve the combustibility of the slurry fuel. In this way, the sealing liquid supplied by the source of sealing liquid 220 may be used to improve the lubricity and ignitability performance. As a result, the wear of the moveable valve needle 134 and the tip 136 abrading against the needle seat 138 due to shortage of the lubrication is limited.
In some embodiments the rate of flow of the sealing liquid to the needle fuel chamber 144 and/or the needle valve seat 138 can be varied and controlled. This means that the amount of sealing liquid used as a pilot fuel can be adjusted depending on the characteristics of the slurry fuel.
The fuel supply valve 122 will now be discussed in further detail with respect to
The fuel supply valve 122 controls the flow of the slurry fuel to the fuel injector valve 102. In some embodiments the fuel supply valve 122 is mounted inside the fuel injector valve 102. In other embodiments the fuel supply valve 122 is mounted between the fuel reservoir 118 and the pump chamber 120. In some embodiments the fuel supply valve 122 is a one way valve. This means that the slurry fuel can only flow into the fuel injector valve 102. Alternatively the fuel supply valve 122 is a two way valve, but the fuel supply valve 122 is selectively controlled to open only when the pressure in the pump chamber 120 is less than the pressure of the slurry fuel.
The fuel supply valve 122 in fluid communication between the fuel inlet port 116 and the pump chamber 120. In some embodiments the fuel inlet port 116 is arranged in the fuel supply valve 122. Alternatively the fuel inlet port 116 is remote from the fuel supply valve 122.
The slurry fuel is in some embodiments pressurised at a pressure of 1 bar to 20 bar. In other embodiments the slurry fuel is at a pressure of 6 bar to 15 bar. It is to be noted that there are three separate liquids that are supplied to the fuel injector valve 102. The pressure of the sealing liquid, the actuation liquid, and the sealing liquid are all at different pressures. The different pressures may be provided to accommodate different functions of the sealing liquid, the actuation liquid and the slurry fuel.
The fuel supply valve 122 comprises a supply valve fuel inlet 302 in fluid communication with the fuel reservoir 118 via the fuel inlet port 116. The supply valve fuel inlet 302 is arranged to let the slurry fuel flow into the fuel valve supply 122. The fuel supply valve 122 further comprises a supply valve fuel outlet 304 in fluid communication with the nozzle 108 of the fuel injector valve 104. The fuel supply valve also comprises a pump chamber port 306 in fluid communication with the pump chamber 120 of the fuel injector valve 102.
The fuel supply valve 122 comprise a supply valve moveable element 308 mounted within a fuel supply valve housing 310. The supply valve moveable element 308 in some embodiments is a moveable valve gate 308. The moveable valve gate 308 may be selectively located in one or more a slurry fuel flow paths in the fuel supply valve 122. In some embodiments the valve gate 308 comprises a conduit with a moveable slurry fuel flow path. In other embodiments the valve gate 308 is a solid element which diverts the flow of the slurry fuel between a first slurry fuel path and a second slurry fuel path.
The valve gate 308 is moveable between a first position wherein the supply valve fuel inlet 302 is in fluid communication in a first slurry fuel flow path with the pump chamber port 306 and a second position wherein the supply valve fuel outlet 304 is in fluid communication in a second slurry fuel flow path with the pump chamber port 306.
In this way the valve gate 308 selectively controls flow of the slurry fuel from the supply valve fuel inlet 302 to the pump chamber 120. Furthermore the fuel supply valve selectively controls whether the pump chamber 120 is connected to the fuel inlet port 116 or the nozzle 108 of the fuel injector valve 102. In the first position the fuel supply valve 122 is open with respect to the fuel inlet port 116 and allows the slurry fuel to flow into the pump chamber 120. In the second position the fuel supply valve 122 is closed with respect to the fuel inlet port 116 and the slurry fuel is not allowed to flow into the pump chamber 120.
The functionality of the fuel supply valve 122 will now be discussed. In a first filling phase, the valve gate 308 is in the first position and the slurry fuel flows through the fuel supply valve 122 into the pump chamber 120. The pressure of the slurry fuel is sufficient to push the fuel injection piston 200 upwards towards the second end 106. As the fuel injection piston 200 and the actuation piston 206 are pushed upwards to the second end 106, a portion of the actuation liquid in the actuation chamber 212 flows back into the actuation liquid reservoir 216.
In a second valve cut-off phase the pump chamber 120 becomes full with the slurry fuel. At this stage the valve gate 308 of the fuel supply valve 122 moves from the first position to the second position. The fuel inlet port 116 is no longer in fluid communication with the pump chamber 120. When the supply valve moveable element 308 moves between the first and second positions, the moveable element does not substantially exert a force opposing a flow on the slurry fuel into the pump chamber 120. This means that the slurry fuel can be maintained at a low pressure and the action of the fuel supply valve opening and closing does not increase the pressure on the slurry fuel. This means that the fuel supply valve exerts minimal additional pressure on the slurry fuel and limits the chances of the non-Newtonian slurry fuel to precipitate out or agglomerate the solid fuel particles. This avoids the fuel supply valve causing misfires because the slurry fuel clogs in the fuel supply valve 122 or the pump chamber 120.
In some embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is less than 170N. In further embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is less than 150N. In yet further embodiments the opposing force of the moveable element 308 against the flow of the slurry fuel is less than 100N. In yet further embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is less than 50N. In yet further embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is less than 25N. In yet further embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is less than 10N. In yet further embodiments the opposing force of the moveable element 308 against the flow of the slurry fuel is less than 5N. In yet further embodiments the opposing force of the valve gate 308 against the flow of the slurry fuel is approximately or equal to 0N.
In a third injection phase the actuation liquid control valve 218 opens and high pressure actuation liquid rapidly flows into the actuation chamber 212. Since the pressure of the actuation liquid is at a much greater pressure than the slurry fuel in the pump chamber 120, a force urges the fuel injection piston rapidly towards the first end 104. This causes the slurry fuel to be pressurised and forced into the needle fuel chamber 144. In some embodiments this is the only time that the slurry fuel is exposed to a high pressure to limit the chances of the slurry fuel precipitating or agglomerating. The pressure of the slurry fuel causes the needle piston 148 to recoil and move the moveable needle valve 134 into an open position. The slurry fuel is then pushed into the combustion chamber 300.
In a fourth valve open phase, the spring 142 urges the needle piston 148 and the moveable valve needle 134 to the closed position. The valve gate 308 of the fuel supply valve 122 moves into the first position. The cycle then starts against with the first filling phase.
In some embodiments, the fuel supply valve is actuated with a motor and electronic control system. In other embodiments the fuel supply valve is actuated with a gearing system coupled and synced to the engine timing. In other embodiments the fuel supply valve is actuated with any suitable means for actuating and moving the valve gate 308.
Turning now to
The fuel injector valve 500 is similar to the fuel injector valve 102 as discussed in reference to previous embodiments. The fuel injector valve 500 comprises a different structure of the fuel supply valve 502 which will be discussed in further detail now.
The fuel injector valve 500 comprises a moveable cartridge 504. The moveable cartridge 504 in some embodiments is rotatable about the longitudinal axis B-B of the fuel injector valve 500. The rotatable cartridge 504 comprises a plurality of chambers 506 which are circumferentially distributed around the rotatable cartridge 504.
The rotatable cartridge 504 is rotatably mountable on a bearing surface (not shown) within a reciprocal cartridge chamber 520. The cartridge chamber 520 allows free rotation of the rotatable cartridge 504 therein. The cartridge chamber 520 is defined by side walls 522 of the housing 110. An upper surface 524 of the cartridge chamber 520 is provided by an injector fuel valve cap 516. A lower surface 526 of the cartridge chamber 504 is defined by an intermediary wall 528. The bearing surfaces of the rotatable cartridge 504 are respectively located on the lower and upper surfaces 526, 524.
Each chamber 506 comprises a longitudinal bore 508 which is substantially parallel with the axis B-B. The longitudinal bore 508 in some embodiments is an open bore such that slurry fuel is able to enter the bore from the underside and actuation liquid is able to enter the bore from above. A fuel injection piston 510 and an actuation piston 512 are provided in each longitudinal bore 508. The fuel injection piston 510 and actuation piston 512 are part of the same shuttle piston 518 and are slidably disposed in the longitudinal bore. The arrangement of each of the chambers 506 and the fuel injection piston 510 and the actuation piston 512 is the same as the fuel injection valve 102 discussed in respect of the previous embodiments. In this way the chambers 506 can be similarly considered to be pump chamber 120 and an actuation chamber 212.
Similar to the previous embodiments, optionally, a sealing liquid is provided to lubricate and seal the pump chamber 120 and the actuation chamber 212. In addition one or more rotation cartridge sealing liquid conduits may be provided to seal and lubricate the rotatable chamber 504. The one or more rotation cartridge sealing liquid conduits are provided at the bearing surfaces on the lower and upper surfaces 526, 524. This means that the sealing liquid is provided around a lip of the periphery of each pump chamber 120 on the rotation cartridge 504 and prevents the slurry fuel from contaminating the rotation mechanism of the rotation cartridge.
The actuation piston 512 is in fluid communication with the high pressure actuation reservoir 216 via actuation liquid port 514. The actuation liquid port 514 is located in an injector fuel valve cap 516. The injector fuel valve cap 516 is mountable on the housing 110. The functionality and arrangement of the actuation liquid is the same as previously discussed embodiments.
The rotatable cartridge 504 rotates and sequentially positions each chamber 506 in a different relatively position with respect to the actuation liquid port 514, the supply valve fuel inlet and the supply valve fuel outlet. The supply valve fuel inlet and the supply valve fuel outlet and their respective fluid connections through the fuel valve injector 500 are the same as the previously describe fuel valve injector 102.
In a first rotation position the rotatable cartridge 504 is positioned such that the pump chamber 120 is in fluid communication with the supply valve fuel inlet. The fuel inlet port 116 receives fuel from the fuel reservoir 118 and the fuel inlet is in fluid communication with a supply valve fuel inlet.
The slurry fuel is maintained at a low pressure when the slurry fuel flows into the pump chamber 120 of a first chamber 506 of the rotation cartridge 504. The slurry fuel is kept at a pressure between 6 bar and 15 bar when the slurry fuel enters the fuel supply valve 502.
In a second rotation position the rotatable cartridge 504 rotates such that the pump chamber 120 of the first chamber 506 of the rotation cartridge 504 is aligned with the supply valve fuel outlet. At the same time the actuation chamber 212 is aligned with the actuation liquid port 514. In the second position, the fuel injector valve is ready to fire and drive the slurry fuel in the pump chamber 120 to the nozzle 108. The arrangement of the nozzle 108 is the same as described in reference to the previous embodiments.
In some embodiments the first chamber 506 of the rotation cartridge 504 is then rotated back to the first rotation position so that the pump chamber 120 is ready to be filled again.
Optionally, the rotation cartridge moves the first chamber 506 of the rotation cartridge 504 to a third rotation position. In the third position, the rotatable cartridge is aligned with a flushing port (not shown). The flushing port is connected to a flushing medium system (not shown) that flushes the pump chamber 120 and the actuation chamber 212 in between the second position and the first position. The flushing medium system delivers a flushing liquid to the rotatable cartridge 504. In other words, the flushing stage occurs between the filling stage and the injection stage.
This mitigates the likelihood that the fuel will build up inside the chamber and cause blockages. The flushing system delivers flushing medium to both the top and bottom of the shuttle piston 518.
In some embodiments the flushing liquid is provided firstly, to the bottom of the shuttle piston 518 in the pump chamber 120 forcing the shuttle piston 518 to the top dead centre position. The remaining actuating liquid on or at the top of the chamber 506 is collected and sent to the actuating liquid reservoir 216. The collection of the actuation liquid is similar to the process as discussed with respect to the previous embodiments. Flushing medium is then pumped into the top chamber forcing the piston to bottom dead centre and evacuating the flushing medium from the lower chamber.
The rotation cartridge 504 as shown in
In some embodiments the revolving cartridge 504 is rotated using hydraulic oil from a servo oil system (not shown) from the engine 100. In this way the timing of the rotatable cartridge 504 is driven by the speed of the engine 100. A hydraulic piston (not shown) connected to a spur gear (not shown) allows the rotating cartridge 504 to rotate about the axis B-B. A geared system (not shown) ensures that the chambers 506 line up with their respective filling and fuel egress ports in the first, second and third rotation positions. Additionally the geared system may ensure a good seal is maintained.
The rotation of rotatable cartridge 504 ensures that the slurry fuel is selectively controlled in each chamber 506. The rotation of the rotatable cartridge 504 is substantially transverse to the direction of flow of the slurry fuel into the pump chamber. The rotation of the rotatable cartridge 504 rotates across the flow of the slurry fuel. This means that the force of rotating the rotatable cartridge 504 on the slurry fuel is minimal.
In alternative embodiments the rotatable cartridge 504 is rotated with other means, for example a separate motor and electronic control system. The rotatable cartridge can be operated with any other suitable means for rotating the cartridge 504 between the different positions.
Another embodiment will now be discussed in reference to
The fuel injector valve 102 is the same as shown in
In
The valve gate 308 comprises an inlet surface 602 and a chamber surface 604. The surface area of the inlet surface 602 is smaller than the surface area of the chamber surface 604. Accordingly the fuel supply valve 122 is a differential area valve.
The slurry fuel enters the fuel supply valve 122 at the fuel inlet port 116. The pump chamber 120 is empty in
In
The slurry fuel flows into the pump chamber 120 and also the into a spool valve conduit 606. The spool valve conduit 606 houses a portion of the moveable element 308 and the chamber surface 604 and is in fluid communication with the pump chamber 120. Accordingly as the pump chamber 120 fills with the slurry fuel, the spool valve conduit 606 also fills with the slurry fuel.
The resultant force R of on the moveable valve element 308 is determined by the force exerted on the inlet surface 602:
F
inlet
=P
fuel
×A
inlet
and the force exerted on the chamber surface 604:
F
chamber
=P
chamber
×A
chamber
This means that when Finlet>Fchamber, the resultant force will urge the valve gate 308 into the first position where the fuel supply valve allows the slurry fuel into the pump chamber 120.
As the pump chamber 120 fills up, the slurry fuel is present both in the supply valve fuel inlet 302 and the pump chamber 120 and the spool valve conduit 606. When the pressure equalises on both sides of the valve gate 308, then
F
inlet
<F
chamber
Accordingly the resultant force on the valve gate 308 causes the valve gate 308 to move from the first position to the second position as shown in
The pump chamber 120 is now full of slurry fuel and the supply valve fuel outlet 304 and the nozzle 108 are in fluid communication with the pump chamber 120. This means that the pump piston 200 can inject the slurry fuel to the nozzle 108 ready for combustion.
This means that the pressure of the slurry fuel can be used to actuate the fuel supply valve 122. This means that the slurry fuel is only exposed to a high pressure in the fuel injector valve 102 as it is driven to the nozzle 108. This limits the chances of the non-Newtonian slurry fuel behaving adversely in the fuel system.
The other steps of the fuel injector valve 102 and the structural features of the fuel injector valve 102 are the same as previously discussed in respect of earlier embodiments.
In another embodiment two or more embodiments are combined. Features of one embodiment can be combined with features of other embodiments.
Embodiments of the present invention have been discussed with particular reference to the examples illustrated. However it will be appreciated that variations and modifications may be made to the examples described within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1703938.9 | Mar 2017 | GB | national |
This application is a continuation of International Application No. PCT/EP2018/056276, filed Mar. 13, 2018, which claims priority to United Kingdom Application No. 1703938.9, filed Mar. 13, 2017, under 35 U.S.C. § 119(a). Each of the above referenced patent applications is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2018/056276 | Mar 2018 | US |
Child | 16569490 | US |