The present application relates generally to the field of internal combustion engines. More particularly, the present application relates to fuel injection systems for internal combustion engines.
Fuel injection systems provide fuel to an internal combustion engine. A typical fuel injection system includes a pump and an injector. The pump provides pressurized fuel from a tank to the injector, and the injector meters the fuel into the air intake or combustion chamber. A typical fuel injector uses a solenoid or piezoelectric system to move a needle, thereby permitting or preventing flow of the pressurized fuel through the fuel injector to an outlet nozzle. Internal combustion engines using fuel injection systems typically have cleaner emissions than carbureted; however, in many small engines, and in many parts of the world, carburetors are still widely used due to the cost and complexity of fuel injection systems. Thus, there is a need for an improved fuel injection system. There is a further need for an improved low-cost fuel injection system.
One embodiment relates to a fuel injector including a sleeve having a first end proximate an outlet; a piston received in the sleeve and slidable between a first position and a second position, the piston having a first end proximate the outlet; a pumping chamber at least partially defined by the sleeve between the first end of the piston and the outlet; and a normally-open inlet valve through which fuel passes to enter the pumping chamber. The inlet valve may close when the piston has sufficient velocity to create sufficient pressure inside the fluid pumping chamber to close the inlet valve. The inlet valve may further include a valve body biased away from a valve seat by a valve spring, and wherein the inlet valve closes when the piston has sufficient velocity to create sufficient pressure inside the fluid pumping chamber to overcome the force of the inlet valve spring. The fuel injector may include a normally-closed outlet valve coupled to the first end of the sleeve. The inlet valve may be located in the piston. The piston may include a wall coupled to the inlet valve, the wall and the inlet valve at least partially defining a cavity in the piston, wherein fuel passes through the cavity to enter the pumping chamber. The fuel injector may include a magnetic actuation assembly supported by the housing and coupled to the piston, the magnetic actuation assembly configured to translate the piston. The magnetic actuation assembly may include a magnet and a coil.
Another embodiment relates to a fuel injector including a sleeve having a first end and a second distal the first end; a normally-closed outlet valve coupled to the first end of the sleeve; a piston received in the sleeve and slidable between a first position and a second position, the piston having a first end proximate the outlet valve and a second end distal the first end; a normally-open inlet valve through which fuel passes to enter the pumping chamber, the inlet valve coupled to the first end of the piston; and a pumping chamber at least partially defined by the sleeve between the inlet valve and the outlet valve. Movement of the piston from the second position to the first position forces fluid from the pumping chamber through the outlet valve, and movement of the piston from the first position to the second position draws fluid into the pumping chamber through the inlet valve. Reciprocation of the piston between the first and second positions may cause the fuel injector to act as a positive displacement or impulse pressure pump.
Another embodiment relates to a control system for a fuel injector. The control system may include a circuit configured to measure the voltage across a coil in the fuel injector corresponding to the velocity of the coil through a magnetic field. The control system may include a circuit configured to measure the voltage across a current sense resistor. The control system may include processing electronics configured to control the velocity and/or position of a piston in the fuel injector, for example, in response to a voltage across the coil and/or a voltage across the current sense resistor. The control system may include processing electronics configured to self-calibrate the control system.
Another embodiment relates to a control system for a fuel injector. The control system includes a circuit configured to measure a current through a coil in the fuel injector. The control system further includes processing electronics configured to receive the measured current from the circuit and to determine at least one of a velocity and a position of the coil through a magnetic field by correlating the measured current to the velocity of the coil.
Another embodiment relates to an outlet valve assembly for a fuel injector. The outlet valve assembly includes an outlet valve having a valve seat, a valve body, and a spring biasing the valve body against the valve seat such that the outlet valve assembly is normally closed. The valve opens passively under pressure. The outlet valve assembly may include at least one plate located downstream of the valve seat, wherein the at least one plate comprises an orifice plate having at least one orifice configured to atomize a flow of fuel passing through the at least one orifice. The at least one plate may include a second plate adjacent an upstream side of the orifice plate and a first plate adjacent an upstream side of the second plate, wherein the first plate and the second plate cooperate to increase or cause turbulence in a flow of fuel passing through the first and second plates. The valve body may include a ball located on the downstream side of the valve seat.
The foregoing is a summary and thus by necessity contains simplifications, generalizations, and omissions of detail. Consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices and/or processes described herein, will become apparent in the detailed description set forth herein and taken in conjunction with the accompanying drawings.
Referring generally to the FIGURES, a fuel injection system, and components thereof, are shown according to an exemplary embodiment. The fuel injection system is shown to include a fuel injector and a control circuit. The injector includes a reciprocating piston, an inlet valve, an outlet valve, and a fluid pumping chamber. The injector further includes a coil actuator and a magnetic field, the interaction of which produces an electromagnetic force which drives the piston. Motion of the reciprocating piston in a direction that reduces the volume of the fluid pumping chamber forces fuel out of the injector. The inlet valve is normally open and closes when the piston moves with sufficient speed to generate sufficient pressure inside the fluid pumping chamber. Motion of the piston within the injector forces the fuel out through the orifice under pressure, thus negating the need for a separate fuel pump and pressure regulator, as required by conventional fuel injection systems, thus reducing the number of parts and components which are typically costly to produce. The injector may deliver fuel to the intake or directly into the combustion chamber of an internal combustion engine. While the fuel injection system is described with respect to fuel and internal combustion engines, the system may be used with other fluids in other applications. For example, the injector may be used to spray or inject other liquids, for example, water, beverage, paint, ink, dye, lubricant, scented oil, etc.
An exemplary circuit is provided for sensing and controlling the injector. Methods of sensing may use the circuit, or portions thereof, to directly determine the velocity of the piston and to indirectly determine the position of the piston. Methods of control may use the circuit, or portions thereof, to meter the amount of fuel injected for each pumping stroke of the piston. The sensing and controlling may be combined to form a closed-loop control system of the injector to precisely meter the amount of fuel being injected. In other embodiments, the injector may be operated in an open-loop system.
Before discussing further details of the fuel injection system and/or the components thereof, it should be noted that references to “top,” “bottom,” “upward,” “downward,” “inner,” “outer,” “right,” and “left” in this description are merely used to identify the various elements as they are oriented in the FIGURES. These terms are not meant to limit the element which they describe, as the various elements may be oriented differently in various applications.
It should further be noted that for purposes of this disclosure, the term “coupled” means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature and/or such joining may allow for the flow of fluids, electricity, electrical signals, or other types of signals or communication between the two members. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.
Referring to
The magnet 11 may be an axially magnetized permanent magnet coupled between (e.g., sandwiched between, interconnecting, etc.) the pole piece 12 and the plate 13, which are both made of a material with high magnetic permeability such as iron, low carbon steel, etc. According to other embodiments, other configurations found in “voice-coil” type actuators can be used to produce the same function, for example, a radially magnetized permanent magnet concentric with, and on the inside and/or outside of the coil 15. The pole piece 12 and the plate 13 define an annular gap 14 radially therebetween. The coil 15 is situated in the gap 14 with sufficient inward and outward radial clearance from the pole piece 12 and the plate 13, respectively to permit axial movement of the coil 15. The coil 15 is coupled to the cage 16 via the former 38, and the cage 16 is coupled to the piston 17. The coil 15 is wound from an electrically conductive material such as copper or aluminum with insulation. The cage 16 has at least one slot which allows fuel to pass therethrough and which minimizes the weight and drag of the cage 16.
According to the exemplary embodiment shown, magnetic actuation assembly comprises a moving coil type actuator (e.g., a “voice-coil” type actuator). The moving coil type actuator advantageously provides low inductance and hysteresis, which is well-suited for high frequency operation. Furthermore, the force acting on the coil 15 increases linearly with the current flowing therethrough and the force remains nearly constant throughout its entire stroke. These characteristics facilitate control of the actuator. Furthermore, the moving type actuator generates a large back EMF voltage proportional to its speed as it moves through the magnetic gap 14 between the pole piece 12 and plate 13. This back EMF voltage can be exploited to sense the velocity and derive the position of the coil 15. As described in an exemplary embodiment below, this information can be used in a closed-loop feedback control scheme to precisely meter the amount of fluid being injected or sprayed even in the presence of disturbances such as the presence of vapor bubbles and variations in supply voltage. According to other embodiments, a solenoid type actuator may be used. The position of the armature in a solenoid type actuator changes the solenoid coil's reactance, which affects the current through the solenoid coil and can be used to detect the velocity and position of the armature or plunger.
According to the embodiment shown, the piston 17 includes a substantially cylindrical wall having a first or top end, proximate the plate 13, and a second or bottom end, distal the plate 13. The piston wall defines a longitudinal piston cavity through which fluid passes during the piston pumping cycle, i.e., the injection cycle. The bottom end of the piston 17 is shown to include a piston end face 39 and an inlet valve seat 33 formed in the bottom end of the piston 17. The piston 17 is received in sleeve 21, which in turn is received in the lower portion 6 of the housing 2. The sleeve 21 is configured to permit axial translation or sliding of the piston 17 therein. The sleeve 21 may be a formed as a part of the housing 2 (e.g., as a bore formed or machined therein), or the sleeve 21 may be formed separately from the housing 2 and subsequently coupled thereto. The sleeve 21 further includes a ledge or step 20, and the cage 16 also includes a ledge or step 19. A main spring 18 is located between the step 19 on the cage 16 and the step 20 on the sleeve 21, and biases the cage 16 towards the plate 13. According to another embodiment, the main spring 18 can bias the cage 16 towards the outlet valve retainer 102. The upstroke or suction stroke of the piston 17 is initiated completely by the force of the coil 15; whereas, the down stroke of the piston 17 can be powered by the main spring 18 alone or with the help of the coil force in the reverse direction. This embodiment may allow a more precise control of the stroke of the piston 17.
Fresh fuel enters into the main cavity 30 (e.g., fuel chamber) via the fuel inlet 31. According to one embodiment, liquid fuel enters the piston cavity from the main cavity 30 via one or more holes 25 through the wall of the piston 17. According to another embodiment, the liquid fuel may pass through the cage 16 and enter the piston cavity through the top end of the piston 17 as piston 17 moves away from the plate 13 (see e.g.,
The fuel inlet 31 is located relatively low on the injector 10 relative to the main cavity 30 and the vapor outlet 29. Any vapor in the injector 10 rises to the top of the injector 10 and out of the vapor outlet 29 due to buoyancy. Fuel vapor present in the injector 10 may come from the fuel supply (e.g., through fuel inlet 31) and/or may be generated inside the injector 10 due to a reduction in pressure and/or an increase in temperature. As shown, the fuel inlet 31 is substantially horizontal; however, the fuel inlet 31 may extend at downward angle from the end cap 4 to inhibit fuel vapor from travelling upstream through the fuel inlet 31. A series of holes, opening, orifices, etc., may form a low resistance path or passageway extending through the pole piece 12, the magnet 11, and the plate 13, to allow fuel vapor present in the fuel injector to escape through the vapor outlet 29 as part of the end cap 4. For example, according to one embodiment, the holes may be centrally aligned along longitudinal axis 8, shown as passageway 28. According to another embodiment, the holes may be offset from the axis 8, shown as passageway 27. According to another embodiment, the vapor passageway may include spacing between the pole piece 12 and the housing 2. Such venting of the fuel vapors helps provide reliable operation of the fuel injector during hot operating conditions.
Referring specifically to
According to the exemplary embodiment shown, the inlet valve body 32 is biased away from the inlet valve seat 33 by the inlet valve spring 36 so that it is normally open, i.e., normally allows fuel to enter into the fluid pumping chamber 40 from inside the piston cavity. The flange 37 on an end of the inlet valve stem 34 distal the inlet valve body 32 limits the travel of the inlet valve body 32 in the open position. The fluid pumping chamber 40 is substantially defined on top by the piston end face 39 and inlet valve body 32, on the bottom by the top face 101 of an outlet valve retainer 102 and an outlet valve seat body 103, and on the sides by the inside wall of the sleeve 21.
The normally open inlet valve 50 allows fuel to enter the fluid pumping chamber 40 by gravity alone, which reduces the priming requirements particularly when the fluid pumping chamber 40 is full of fuel vapor or when there is no fuel in the injector 10 at all. The normally open inlet valve 50 combined with its large flow area also reduces the pressure drop during the upstroke of the piston 17, which reduces the formation of fuel vapors. Furthermore, having the inlet valve 50 open at the start of an injection cycle allows the piston 17 to gain velocity without significant resistance. Once the inlet valve 50 closes, the piston 17 will have gained enough velocity to generate a high pressure inside the fluid pumping chamber 40, which increases the amount of fuel atomization through the orifice plate 112 of the outlet. Further, the increased velocity of the piston 17 may create sufficient pressure in the fluid pumping chamber 40 to collapse or condense fuel vapor bubbles therein. Upon closing of the inlet valve 50, the pressure in the fluid pumping chamber 40 increases substantially. This large pressure rapidly decelerates the piston 17, partially also due to the low mass of the moving components. This substantial reduction in velocity can be observed by monitoring the voltage across the coil 15 and/or across a current sense resistor to mark the beginning of an injection event. According to another embodiment, the inlet valve 50 can be located elsewhere other than on the piston 17 such as on the sleeve 21, while still in fluid communication with the fluid pumping chamber 40. According to another embodiment, the inlet valve 50 may also be used with another check valve such that one valve is responsible for introducing fluid into the fluid pumping chamber 40, while the other valve is used to expel vapor.
Another advantage of the normally open inlet valve 50 is that it allows fuel vapor in the fluid pumping chamber 40 to pass through the inlet valve 50 due to the orientation of the injector 10 and the buoyancy of the fuel vapor relative to the liquid fuel. The presence of fuel vapor bubbles in the fluid pumping chamber 40 could potentially cause a positive displacement type pump to meter the incorrect amount of fuel. This is due to the fact that the presence of bubbles will change the bulk density of the fuel being metered so that the same volume of fuel being injected will not correspond to the same mass. The chances of fuel vapor bubbles being generated or brought into the fluid pumping chamber is high in particular when the fuel injector is hot and during the upstroke of the piston 17 in which the flow of fuel past the restriction of the inlet valve 50 causes the fuel to decrease in pressure. According to embodiments described in more detail below, the injector 10 provides an initial low pressure portion of the stroke in which the inlet valve 50 does not close and any vapor bubbles present in the fluid pumping chamber 40 exits through the inlet valve 50 and/or may be condensed into liquid form.
Referring to
Referring to
Referring to
According to other embodiments, outlet valve designs other than those described above and shown in
Referring to
The connector 24 may be configured as a male or female connector, and is connected to processing electronics (e.g., an electronic control unit (ECU), processing electronics, etc.), which is capable of causing sufficient current to pass through the coil to actuate the injector 10. The processing electronics may include a memory and processor. The processor may be or include one or more microprocessors, an application specific integrated circuit (ASIC), a circuit containing one or more processing components, a group of distributed processing components, circuitry for supporting a microprocessor, or other hardware configured for processing. According to an exemplary embodiment, the processor is configured to execute computer code stored in the memory to complete and facilitate the activities described herein. The memory can be any volatile or non-volatile memory device capable of storing data or computer code relating to the activities described herein. For example, the memory may include one or more modules which are computer code modules (e.g., executable code, object code, source code, script code, machine code, etc.) configured for execution by the processor. Exemplary modules may include a low pressure portion of the stroke module, a high pressure portion of the stroke module, an injector priming module, a self-calibration module, etc. When executed by the processor, the processing electronics is configured to complete the activities described herein. The processing electronics includes hardware circuitry for supporting the execution of the computer code of the modules. For example, the processing electronics may include hardware interfaces for communicating control signals (e.g., analog, digital) from the processing electronics to the injector 10 (e.g., pin(s) 23). The processing electronics may also include an input for receiving or sensing data or signals (e.g., feedback signals) from the injector 10 (e.g., pin(s) 23) and from various sensors indicating engine operating conditions (e.g., phase, crank angle, engine speed, engine temperature, coolant temperature, air temperature, etc.).
A piston pumping cycle is described, according to an exemplary embodiment. As shown in
The closing of the inlet valve marks the start of the second fluid pumping stroke, as shown in the position depicted by example in
Referring now to
Before the start of an injection cycle, the signal at the gate 203 of the transistor 202 is greater than the threshold which does not allow current to pass through from the source of the transistor 202 to its drain. At the start of an injection cycle, a low signal is sent to the gate 203 of the transistor 202 such that it is operating in saturation after a small amount of time, which allows current to flow from its source to its drain. The voltage at the top end of the coil 204 is now at the supply voltage of node 201 minus the voltage drop across the transistor 202, which causes current to travel through the coil 204 and the current sense resistor 207 to the ground 208. When it is desired to stop current through the coil 204, the signal at the gate 203 of the transistor 202 is raised to above the threshold which stops current flow from the source to the drain. Due to the inductance of the coil 204, its current does not stop immediately but flows through the diode 205 for a short time during which energy stored in the magnetic field of the coil 204 is dissipated through the resistance of the coil 204. An additional resistor can be added in series with the diode 205 to reduce the time to dissipate the energy through the coil 204. The diode 205 is known as a “freewheeling” diode, which protects the drain of the transistor 202 from large negative transient voltages due to the inductance of the coil 204. The capacitor 206 prevents a large spike in voltage because the diode 205 has a small but finite turn-on time. The first and second operational amplifiers 209 and 212 can be used to sense the voltages across the coil 204 and current sense resistor 207 at any time. The outputs nodes 215 and 216 can be output to (e.g., received by) processing electronics or a portion thereof, for closed-loop control of the coil 204.
The circuit mentioned above is only one method of driving and sensing the coil 204. There exists other methods that are capable of achieving the same, such as with the use of another type of transistor (e.g., a field effect transistor (e.g., an N-channel MOSFET, a JFET, etc.)), a bipolar junction transistor, etc., with appropriate modifications to the circuit. Alternatively, the voltage from the current sense resistor 207 can be used to provide a current controlled source using negative feedback.
Referring to
At the instance 310, the high pressure pulse 311 begins. At some instance shortly after the instance 310, the velocity of the piston 17 reaches a sufficient speed in order to generate sufficient pressure inside the fluid pumping chamber 40 to cause the inlet valve to close and the outlet valve to subsequently open, which marks the beginning of the high pressure portion of the stroke. The arrangement of the mechanical components during the high pressure portion of the stroke can be seen, for example, in
Using the waveform in
The system and method described with respect to the waveform of
Referring now to
At the start of an injection event at the instance 403, the processing electronics cause a voltage to be applied across the coil 15, 204 with a low duty cycle until the instance 404. During this time, the piston 17 does not move with sufficient velocity to generate sufficient pressure in the fluid pumping chamber 40 to close the inlet valve. According to another embodiment, the initial low duty cycle stroke is omitted in this second method of control. At the instance 404, the high duty cycle pulse begins. The current through the coil 15, 204 takes some finite time to increase due to the inductance of the coil, reaching its maximum level at instance 405. After instance 404, the speed of the coil 15, 204 increases substantially, which is responsible for the reduction in the voltage after instance 405. An increase in coil speed leads to a reduction in the current through the coil 15, 204 and subsequently a reduction in the voltage across the current sense resistor 207 due to the back EMF generated by the moving coil.
For the waveform 402, at instance 406 the voltage increases sharply because the piston 17 has sufficient speed to generate sufficient pressure inside the fluid pumping chamber 40 to close the inlet valve, which further increases the pressure and decelerates the piston 17 and coil 15 velocity. The closing of the inlet valve marks the beginning of the high pressure portion of the stroke. At some time after the high pressure portion of the stroke begins, the velocity of the coil 15 slows down to some steady value greater than zero, which can be observed by the voltage level 410. According to the exemplary embodiment shown, at the instance 411, the end face 39 of the piston 17 impacts the top face 101 of the outlet valve retainer 102, causing oscillations 412 in the waveform 402. After the oscillations 412, the piston 17 comes to a rest, which can be seen in the shift of the voltage from voltage level 410 to voltage level 409. At the instance 413, the high duty cycle pulse stops and the voltage rapidly falls to zero.
For the waveform 401, since there is no liquid fuel inside the fluid pumping chamber 40, fuel vapor or air in the fluid pumping chamber 40 does not generate significant pressure when it is pushed (e.g., squeezed, forced, etc.) out of the fluid pumping chamber 40 through the inlet valve. Accordingly, the inlet valve does not close. Instead, according to the embodiment shown, the current in waveform 401 increases sharply at the instance 407 when the end face 39 of the piston 17 contacts the top face 101 of the outlet valve retainer 102 and rebounds (e.g., bounces), which can be seen in the oscillations 408. As shown, the high duty cycle pulse is still being applied after the oscillations prior to instance 411, thereby causing the piston 17 to remain in contact with (e.g., rest against, press against, push against, etc.) the outlet valve retainer 102 and causing the voltage of the corresponding waveform 401 to be at the voltage level 409. At the instance 413, the high duty cycle pulse stops and the voltage rapidly falls the zero.
As described with respect to the waveform 401, the processing electronics may be configured to determine when liquid is not being pumped. Accordingly, the processing electronics may be configured to run the injector for a predetermined number of cycles or a predetermined amount of time in an attempt to prime the injector. As described above, residual fuel fluid in the fluid pumping chamber 40 reduces the impact of the piston 17 on the outlet valve. Accordingly, the processing electronics may be configured to cease operation of the injector after the predetermined number of cycles or predetermined amount of time. The predetermined number of cycles or predetermined amount of time may correlate to the cycles or time necessary to pump fluid from a tank to the injector. An injector priming module in the processing electronics may be configured to control the injector 10 as described above.
For both the 401 and 402 waveforms, the voltage level 409 is equal to the supply voltage multiplied by the ratio of the resistance of the current sense resistor 207 over the sum of the resistance of the current sense resistor 207, the resistance of the transistor 202, and the resistance of the coil 204. During operation of the injector 10, the temperature of the coil 15, 204, the current sense resistor 207, and the transistor 202 rises, thereby changing the resistances thereof. Specifically, the resistance of the coil 15, 204 rises; thus, for a given current through the coil 15, 204, the voltage across the coil 15, 204 increases, and for a given voltage across the coil 15, 204, the current through the coil 15, 204 decreases. Accordingly, the processing electronics may control the voltage across, or current through, the coil 15, 204 in response to the temperature of the coil 15. For example, the processing electronics may control the voltage across the coil 15, 204, for example, at node 201, in response to the voltage level 409. According to one embodiment, a self-calibration module in the processing electronics may be configured to determine, provide, and/or store updated current or voltages values in response to the temperature change in the coil 15. The processing electronics may further be configured to stop current to the coil 15 when a voltage at voltage level 409 is sensed, thereby reducing cycle times and possibly reducing wear on the components. The processing electronics may further be configured to calculate the time between instance 312 and instance 313, which is the time required for the main spring 18 to accelerate the moving components until the cage 16 makes contact with the plate 13. This time may be used to calculate the piston stroke length of the previous stroke, or may be used to indicate abnormal operation. For example, if the fluid pumping chamber or injector is not substantially full of fuel, the drag and pressure forces on the moving components will be reduced, and the time between instance 312 and instance 313 will be reduced.
For both 401 and 402 waveforms, the total length of the high pressure portion of the stroke can be determined by the time between when the voltage first increases rapidly to when it reaches the voltage level 409. For example, for waveform 401, the time is nearly zero, and for waveform 402, the time is between the instance 406 and instance 411. In an alternative method of control, the voltage applied across the coil can be stopped before the piston is stopped by the outlet valve retainer in which case the length of the high pressure portion of the stroke can be determined by the time between when the voltage first increases rapidly to when the current is stopped. This method of control is pressure driven rather than of the positive displacement type. In this method of control, the initial low duty cycle pulse is not required for metering.
The system and method described with respect to the waveform of
Furthermore, as described above with respect to
The control and sensing methods described with regards to the waveforms of
The construction and arrangement of the elements of the fuel injection system as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. The elements and assemblies may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Additionally, in the subject description, the word “exemplary” is used to mean serving as an example, instance, or illustration. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word “exemplary” is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
This application is a Continuation of U.S. patent application Ser. No. 14/062,794, filed Oct. 24, 2013 (now U.S. Pat. No. 9,500,170), which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/718,524, filed Oct. 25, 2012, the disclosures of the foregoing U.S. applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4116591 | Mardell | Sep 1978 | A |
4121125 | Dolz | Oct 1978 | A |
4327695 | Schechter | May 1982 | A |
4463900 | Wich | Aug 1984 | A |
4505243 | Miwa | Mar 1985 | A |
4915602 | Tschopp | Apr 1990 | A |
5107890 | Gute | Apr 1992 | A |
5351893 | Young | Oct 1994 | A |
5390257 | Oslac et al. | Feb 1995 | A |
5419492 | Gant et al. | May 1995 | A |
5469828 | Heimberg et al. | Nov 1995 | A |
5472323 | Hirabayashi et al. | Dec 1995 | A |
5511955 | Brown et al. | Apr 1996 | A |
5630401 | Binversie et al. | May 1997 | A |
5704771 | Fujisawa et al. | Jan 1998 | A |
5781363 | Rowan et al. | Jul 1998 | A |
5898786 | Geisenberger | Apr 1999 | A |
6081112 | Carobolante et al. | Jun 2000 | A |
6135357 | Herrin et al. | Oct 2000 | A |
6290308 | Zitzelsberger | Sep 2001 | B1 |
6373957 | Stewart | Apr 2002 | B1 |
6378792 | Fukaya | Apr 2002 | B2 |
6394367 | Munezane et al. | May 2002 | B2 |
6422836 | Krueger et al. | Jul 2002 | B1 |
6614617 | Galloway | Sep 2003 | B1 |
6685114 | Okamoto | Feb 2004 | B2 |
6796290 | Boehland et al. | Sep 2004 | B2 |
6877679 | Lawes | Apr 2005 | B2 |
6923163 | Yamazaki | Aug 2005 | B2 |
6964263 | Xi et al. | Nov 2005 | B2 |
6966760 | Radue | Nov 2005 | B1 |
7063520 | Oh et al. | Jun 2006 | B2 |
7100578 | Yamazaki et al. | Sep 2006 | B2 |
7225790 | Bartunek | Jun 2007 | B2 |
7267533 | Tocci et al. | Sep 2007 | B1 |
7287966 | French et al. | Oct 2007 | B2 |
7309025 | Yamazaki et al. | Dec 2007 | B2 |
7377266 | Xi et al. | May 2008 | B2 |
7410347 | Radue | Aug 2008 | B2 |
7438050 | Allen | Oct 2008 | B2 |
7484673 | Boecking | Feb 2009 | B2 |
7533655 | Allen | May 2009 | B2 |
7753657 | Strauss et al. | Jul 2010 | B2 |
7798130 | Allen | Sep 2010 | B2 |
7866144 | Bakaj et al. | Jan 2011 | B2 |
8079825 | Bocchiola | Dec 2011 | B2 |
20030155444 | Lawes | Aug 2003 | A1 |
20050263135 | Magel et al. | Dec 2005 | A1 |
20060011735 | Magel | Jan 2006 | A1 |
20060097067 | Buehler et al. | May 2006 | A1 |
20070095934 | Wisdom | May 2007 | A1 |
20090108093 | Mattes et al. | Apr 2009 | A1 |
20100011578 | Beck et al. | Jan 2010 | A1 |
20100193611 | Burger et al. | Aug 2010 | A1 |
20100236526 | Wang et al. | Sep 2010 | A1 |
20100312453 | Smither | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0 752 148 | Jan 1997 | EP |
1 248 494 | Oct 2002 | EP |
1 367 225 | Dec 2003 | EP |
2 198 140 | Jun 2010 | EP |
2 452 955 | Mar 2009 | GB |
Entry |
---|
Australia First Examination Report regarding Application No. 201334273 (6 pages). |
Corrected International Search Report and Written Opinion for Application No. PCT/US2013/066703, dated Jul. 28, 2014, 13 pages. |
EP Extended Search Report dated May 17, 2016 regarding EP Application No. 13849666.6 (6 pgs.). |
International Preliminary Report on Patentability completed Nov. 24, 2014 regarding Application No. PCT/US13/66703; 6 pgs. |
International Search Report and Written Opinion dated Feb. 10, 2014 in relate PCT Application No. PCT/US2013/066703. |
Chinese Office Action issued in corresponding application No. 201380055696.1 dated Dec. 5, 2016 with English translation. |
Number | Date | Country | |
---|---|---|---|
20170067429 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
61718524 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14062794 | Oct 2013 | US |
Child | 15356259 | US |