Claims
- 1. A fuel injection system for a mixture-compressing internal combustion engine having externally supplied ignition which comprises an air intake tube and at least one fuel injection valve, said fuel injection valve being disposed in a holder body provided within said air intake tube and arranged to experience air flow circumferentially around said holder body and further arranged to communicate with a fuel supply line and a fuel return line, by means of which fuel is injectable into the air intake tube, said fuel supply line and said fuel return line are inclined relative to a longitudinal axis of said fuel injection valve, each of said lines extending toward the fuel injection valve in a downwardly directed manner, said fuel injection valve having first and second axially spaced circumferential grooves between an outer circumference of said fuel injection valve and an inner circumference of said holder body, each of said first and second grooves communicating respectively with an interior of said fuel injection valve, said first groove communicating with said fuel supply line and said second groove communicating with said fuel return line, said second groove that communicates with said fuel return line being above said first groove that communicates with said fuel supply line, a deaeration chamber connected to said fuel supply line remote from the fuel injection valve, said deaeration chamber is arranged to communicate via a deaeration nozzle with the fuel return line, a fuel feed line that extends from a fuel supply pump and discharges into the deaeration chamber, and said fuel feed line discharges into the deaeration chamber upwardly at an angle of inclination toward the deaeration chamber.
- 2. A fuel injection system for a mixture-compressing internal combustion engine having externally supplied ignition which comprises an air intake tube and at least one fuel injection valve, said fuel injection valve being disposed in a holder body provided within said air intake tube and arranged to experience air flow circumferentially around said holder body and further arranged to communicate with a fuel supply line and a fuel return line, by means of which fuel is injectable into the air intake tube, said fuel supply line and said fuel return line are inclined relative to a longitudinal axis of said fuel injection valve, each of said lines extending toward the fuel injection valve in a downwardly directed manner, said fuel injection valve having first and second axially spaced circumferential grooves between an outer circumference of said fuel injection valve and an inner circumference of said holder body, each of said first and second grooves, communicating respectively with an interior of said fuel injection valve, said first groove communicating with said fuel supply line and said second groove communicating with said fuel return line, said second groove that communicates with said fuel return line being above said first groove that communicates with said fuel supply line, a pressure regulating valve, said pressure regulating valve includes a valve seat and a valve closing element disposed at the highest point in said fuel return line, and a return flow line (33) connected to said pressure regulating valve at a point higher than said valve closing element.
- 3. A fuel injection system for a mixture-compressing internal combustion engine having externally supplied ignition which comprises an air intake tube and at least one fuel injection valve, said fuel injection valve being disposed in a holder body provided within said air intake tube and arranged to experience air flow circumferentially around said holder body and further arranged to communicate with a fuel supply line and a fuel return line, by means of which fuel is injectable into the air intake tube, said fuel supply line and said fuel return line are inclined relative to a longitudinal axis of said fuel injection valve, each of said lines extending toward the fuel injection valve in a downwardly directed manner, said fuel injection valve having first and second axially spaced circumferential grooves between an outer circumference of said fuel injection valve and an inner circumference of said holder body, each of said first and second grooves communicating respectively with an interior of said fuel injection valve, said first groove communicating with said fuel supply line and said second groove communicating with said fuel return line, said second groove that communicates with said fuel return line being above said first groove that communicates with said fuel supply line, a deaeration chamber connected to said fuel supply line remote from the fuel injection valve, said deaeration chamber is arranged to communicate via a deaeration nozzle with the fuel return line, a pressure regulating valve, said pressure regulating valve includes a valve seat and a valve closing element disposed at the highest point in said fuel return line, and a return flow line (33) connected to said pressure regulating valve at a point higher than said valve closing element.
- 4. A fuel injection system for a mixture-compressing internal combustion engine having externally supplied ignition which comprises an air intake tube and at least one fuel injection valve, said fuel injection valve being disposed in a holder body provided within said air intake tube and arranged to experience air flow circumferentially around said holder body and further arranged to communicate with a fuel supply line and a fuel return line, by means of which fuel is injectable into the air intake tube, said fuel supply line and said fuel return line are inclined relative to a longitudinal axis of said fuel injection valve, each of said lines extending toward the fuel injection valve in a downwardly directed manner, said fuel injection valve having first and second axially spaced circumferential grooves between an outer circumference of said fuel injection valve and an inner circumference of said holder body, each of said first and second grooves communicating respectively with an interior of said fuel injection valve, said first groove communicating with said fuel supply line and said second groove communicating with said fuel return line, said second groove that communicates with said fuel return line being above said first groove that communicates with said fuel supply line, a deaeration chamber connected to said fuel supply line remote from the fuel injection valve, said deaeration chamber is arranged to communicate via a deaeration nozzle with the fuel return line, a fuel feed line that extends from a fuel supply pump and discharges into the deaeration chamber, a pressure regulating valve, said pressure regulating valve includes a valve seat and a valve closing element disposed at the highest point in said fuel return line, and a return flow line (33) connected to said pressure regulating valve at a point higher than said valve closing element.
- 5. A fuel injection system for a mixture-compressing internal combustion engine having externally supplied ignition which comprises an air intake tube portion which is positionable above a throttle valve (10) in an air-fuel mixture tube which feeds an air-fuel mixture to the manifold of said engine, said air intake tube portion including an air intake tube (11), a holder body (13) coaxial with said air intake tube arranged to secure a fuel injection valve therein and to experience air flow circumferentially around said holder body, a holder strut (14) and a holder strut thickened portion (23), said holder strut thickened portion including a fuel supply line (25) extending to said holder body and a fuel return line (29) extending from said holder body, said fuel supply line and said fuel return line extending on a downward incline relative to a longitudinal axis of said holder body (13) with said fuel return line on a line higher than said fuel supply line, said fuel supply line and said fuel return line having a inlet end and an outlet end, said inlet end of said fuel supply line being on a plane perpendicular with the axis of said holder body in which said inlet end of said fuel supply line is higher than said inlet from said holder body to said fuel return line, said outlet end of said fuel return line being on a plane perpendicular with the axis of said holder body which is at a height above said holder body and higher than said inlet to said fuel supply line, and a fuel inlet line which supplies fuel to said inlet end of said fuel supply line from a fuel supply on an upward incline relative to said input end of said fuel supply line.
- 6. A fuel injection system as defined in claim 5 which includes a pressure regulating valve, said pressure regulating valve includes a valve seat and a valve closing element disposed at the highest point in said fuel return line, and a return flow line (33) connected to said pressure regulating valve at a point higher than said valve closing element.
- 7. A fuel injection system as set forth in claim 5 which includes a fuel injection valve within said holder body, a cap (16) which fixes said fuel injection valve coaxially within said holder body, said fuel injection valve having upper and lower axially spaced circumferential grooves between the outer circumference of said fuel injection valve and said holder body, said lower groove communicating with the interior of said valve and with said outlet end of said fuel supply line, said upper groove communicating with said interior of said fuel injection valve and said inlet of said fuel return line.
- 8. A fuel injection system as set forth in claim 7 which includes a deaeration chamber (22) adjoining said inlet end of said fuel supply line and said fuel inlet line, and a deaeration nozzle (32) which extends upwardly from said deaeration chamber to said output end of said fuel return line.
- 9. A fuel injection system as set forth in claim 8 which includes a pressure regulator (31), said pressure regulator including a diaphragm which forms a spring loaded chamber and a regulating chamber (30) which connects with said outlet end of said fuel supply line, an outlet from said regulator which connects with a fuel return line, a valve secured to said diaphragm which controls fuel-air flow from said regulating chamber to said outlet, and said valve is positioned on a plane perpendicular to the axis of said holder body which is higher than said outlet end of said fuel return line (29).
- 10. A fuel injection system as set forth in claim 9 in which said deaeration nozzle (32) has a cross section such that approximately 2% of the fuel returning to said supply via said valve flows through said deaeration nozzle.
- 11. A fuel injection system as set forth in claim 8 in which said deaeration nozzle (32) has a cross section such that approximately 2% of the fuel returning to said supply via said valve flows through said deaeration nozzle.
Priority Claims (1)
Number |
Date |
Country |
Kind |
3141154 |
Oct 1981 |
DEX |
|
Parent Case Info
This is a continuation of copending application Ser. No. 397,970 filed July 14, 1982, now abandoned.
US Referenced Citations (3)
Continuations (1)
|
Number |
Date |
Country |
Parent |
397970 |
Jul 1982 |
|