Fuel injection valves that are used for direct fuel injection into the combustion chamber of an internal combustion engine are generally provided with several injection openings, but are at least provided with one injection opening. The fuel injection valves control the injection of compressed and therefore pressurized fuel by the longitudinal movement of a valve needle that has a valve sealing surface and cooperates with a body seat. A distinction is drawn here between essentially two basic types: on the one hand, there are the so-called valve covered orifice nozzles in which the injection openings lead directly from a conical body seat and on the other hand, there are the so-called blind hole nozzles in which the injection openings lead from a blind hole. The blind hole nozzles have the advantage over valve covered orifice nozzles that the distribution of fuel to the individual injection openings occurs in a uniform fashion, generally achieving a more uniform injection pattern than in valve covered orifice nozzles. In blind hole nozzles, however, the problem arises that the fuel that travels between the valve sealing surface and the body seat is subjected to turbulence as it transitions into the blind hole, thus reducing the effective injection pressure at the injection openings.
DE 36 05 082 A1 has disclosed a fuel injection valve that functions in accordance with the principle of the blind hole nozzle. In this case, the valve needle is provided with a needle tip that protrudes into the blind hole even in the open position of the valve needle, i.e. when the needle has lifted away from the body seat. The needle tip has a conical sealing surface with which the valve needle rests against the body seat. This sealing surface is adjoined by a convex, i.e. outwardly arched, region, which, in turn transitions into a concave, i.e. inwardly arched, region. The end of the valve needle thus constitutes a dome that is also arched outward and tangentially adjoins the concave region. This shape of the valve sealing surface is supposed to deflect the fuel flow into the blind hole without causing it to detach from the needle tip in order to avoid turbulence. But in his case, the disadvantage arises that the form of the needle tip cannot be adapted equally well to all injection ports since as a rule, they enclose various angles with the longitudinal axis of the valve needle. This results in an optimized entry for only some ports, while the surface flow travels into other injection openings in a rather unfavorable fashion.
The fuel injection valve according to the invention, with the defining characteristics of claim 1, has the advantage over the prior art of optimizing the entry of the fuel into the blind hole and therefore optimizing the effective injection pressure at the injection openings. To this end, the valve needle has a conical valve sealing surface and a valve needle tip adjoining it; the valve needle tip is arched in concave fashion directly adjacent to the conical valve sealing surface. The fuel flow therefore detaches from the valve needle at the entry into the blind hole and is then deflected by the part of the needle tip situated farther downstream so that the fuel leaves the injection openings at a high speed and therefore with a high effective injection pressure.
Advantageous embodiments of the subject of the invention are possible by means of the dependent claims. In a first advantageous embodiment, at the transition from the conical body seat to the blind hole, an edge is embodied, which, in combination with the embodiment of the needle tip, further optimizes the entry of the fuel into the blind hole. This embodiment is particularly advantageous when the blind hole has a conical wall from which the injection openings lead.
In another advantageous embodiment, the needle tip extends into the blind hole so far that the concave needle tip reaches to the depth of the injection openings even when the valve needle is in its open position. This makes it possible to further optimize the deflection if this is indicated by corresponding proportions and pressure ratios in the blind hole.
In another advantageous embodiment, the concave needle tip is adjoined by an arched dome that constitutes the end of the valve needle. Depending on how far the valve needle protrudes into the blind hole, this can reduce turbulence in the blind hole.
Other advantages and advantageous embodiments of the subject of the invention can be inferred from the description and the drawings.
An exemplary embodiment of the fuel injection valve according to the invention is shown in the drawings.
At its end oriented away from the body seat, the valve needle 5 is acted on by a closing force oriented in the direction of the body seat 9 and is generated, for example, by means of a spring element or by hydraulic means. The valve needle 5 moves longitudinally inside the bore 3 as a function of the ratio of this closing force to the hydraulic opening force, which is essentially generated by the impingement of pressure on the pressure shoulder 13. If the valve needle 5 is resting against the body seat 9, then the blind hole 10 is closed in relation to the pressure chamber 19. But if an injection of fuel is to take place, then the valve needle 5 is moved away from the body seat 9 either through a pressure increase in the pressure chamber 19 or through a reduction in the closing force. As a result, fuel flows between the valve sealing surface 11 and the body seat 9, into the blind hole 10 from which the fuel is injected via the injection openings 7.
When fuel flows out of the pressure chamber 19, between the valve sealing surface 11 and the body seat 9, and into the blind hole 10 during an injection, the flow accelerates on its way into the blind hole 10 since the available flow cross section continuously decreases. In the process, the fuel flows past the edge 34; due to the concave formation of the needle tip here, the flow detaches from the valve needle 5 at the edge 34. This is indicated by small arrows in
The above-described effect achieved by means of the needle tip 30 can be further optimized by providing an inlet edge 38 between the body seat 9 and the blind hole 10 at which edge the fuel flow also detaches to a certain degree from the wall of the valve body 1. The inlet edge 38 is particularly provided when the wall of the blind hole 10 is conically embodied, as is also shown in
The detachment of the flow does not mean that the other regions in the blind hole 10 and against the valve sealing surface 11 constitute dead zones in which no flow occurs. Rather, the above description of the flow detachment means that the main flow with the highest flow speeds takes the described path; this maximum flow speed essentially determines the injection pressure.
It is also possible for the needle tip 30 to be of such a length that it extends to the level of the injection openings 7. This can contribute to an improved deflection of the fuel into the injection openings 7, depending on the dimensions of the blind hole 10 and the injection pressure used.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 025 135.8 | Jun 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/061400 | 4/6/2006 | WO | 00 | 9/14/2007 |