The invention is based on a fuel injection valve for internal combustion engines of the kind known from the prior art. For instance, International Patent Disclosure WO 96/19661 shows a fuel injection valve with a valve body, in which a bore is embodied that is defined on its end toward the combustion chamber by a conical valve seat. A pistonlike valve needle is disposed longitudinally displaceably in the bore and has an essentially conical valve sealing face on its end toward the combustion chamber. The valve sealing face is divided into two conical faces, which are divided from one another by an annular groove. The opening angle of the two conical faces and the opening of the conical valve seat are adapted to one another in such a way that upon contact of the valve needle with the valve seat, the edge that is embodied at the transition from the annular groove to the first conical face comes to rest on the valve seat and acts as a sealing edge, in order to control the flow of fuel to at least one injection opening that originates at the valve seat and discharges into the combustion chamber of the engine.
The second edge of the annular groove, which along with the sealing edge defines the annular groove and is embodied at the transition to the second conical face at the valve sealing face, is spaced apart from the valve seat in the closing position of the valve needle, or in other words when the valve needle comes to rest with its sealing edge on the valve seat. The valve needle is kept in its closing position by a closing force because a closing force that presses the valve needle against the valve seat acts on its end facing away from the combustion chamber. In order for the valve needle to uncover the injection openings, a hydraulic contrary force that exceeds the closing force must act on the valve needle. Given a suitable pressure in the pressure chamber that is embodied between the valve needle and the wall of the bore, the result is a corresponding hydraulic force exerted, among other places, on parts of the valve sealing face, resulting in a corresponding opening force oriented counter to the closing force. If the valve needle then lifts from the valve seat, fuel flows out of the pressure chamber to the injection openings between the valve seat and the valve sealing face.
In the partial stroke range, that is, before the valve needle has reached its maximum opening stroke, the problem arises that because of the inflowing fuel that prevails in the pressure chamber at high pressure, the pressure in the annular groove also rises. A further flow to the injection openings is initially possible only in throttled fashion, since the gap between the second edge of the annular groove and the valve seat assures a corresponding throttling effect, especially whenever, over the course of usage, the spacing between the second edge and the valve seat becomes increasingly less because of wear, or even vanishes entirely in the closing position of the valve needle. This elevated pressure in the annular groove causes an additional opening force on the valve needle that is not initially present and that changes the opening speed and hence also the instant at which the valve needle reaches its maximum opening. Thus over time, the opening dynamics of the valve needle and hence the fuel quantity injected vary. For precise fuel injection of the kind necessary in high-speed, self-igniting internal combustion engines, this change in the opening dynamics means that optimal injection in terms of pollutant emissions and fuel consumption is no longer assured.
The fuel injection valve of the invention having the definitive characteristics of claim 1 has the advantage over the prior art that the opening dynamics of the valve needle remain constant over its entire service life. To that end, recesses are embodied on the valve sealing face that hydraulically connect the annular groove with a portion of the second conical face located on the combustion chamber side of the annular groove.
In the partial stroke range of the valve needle, no additional fuel pressure can therefore build up in the annular groove, since the fuel is diverted through the recesses into the chamber that is embodied between the valve seat and the second conical face. This chamber communicates in turn with the combustion chamber via the injection openings, so that reliable pressure relief of the annular groove in the partial stroke range is assured. Not until the maximum stroke is attained does the fuel flow out of the pressure chamber into these regions of the valve sealing face as well and assure the appropriate pressure increase for injection of the fuel into the combustion chamber at high pressure.
Advantageous features of the subject of the invention can be attained with the provisions of the dependent claims.
In a first advantageous feature, the structure is embodied as a roughening of the valve sealing face. The roughening is directly adjacent to the annular groove and is thus disposed on the second conical face. Such roughening can be produced in a simple way, either with a laser or by an etching process.
In a further advantageous feature, the recesses are embodied as many grooves. By means of a suitable total cross section of the grooves, a suitable cross section at which pressure relief of the annular groove is assured can be attained. These grooves can advantageously be embodied in various ways. It is especially advantageous if the grooves are embodied as microscopic grooves whose depth is less than 50 μm. Such shallow microscopic grooves do not impair the stability of the valve needle in the region of the valve seat, yet nevertheless a suitable cross section that suffices for pressure relief of the annular groove can be attained by way of the number of grooves. It is especially advantageous in this respect if the depth of the grooves is greater than their width, since then the surface area with which the valve needle can be seated on the valve seat increases for the same flow cross section. This reduces wear in the region of the valve seat and thus lengthens the service life of the fuel injection valve.
In a further advantageous feature, the structured surface is formed by grooves whose end facing away from the combustion chamber is located inside the annular groove. Such grooves offer the advantage of being simpler to make. If the annular groove begins precisely at the second edge of the annular groove, then it is not always possible in the manufacturing process to place the beginning of the groove exactly at the second edge. However, if the annular groove begins inside the annular groove, then the precise position of the end toward the combustion chamber of the grooves does not matter.
In a further advantageous feature, the recesses are embodied as many grooves which are curved in an S shape. Grooves designed in this way have the advantage of being faster and hence more favorable to produce. In manufacture by a laser process, the needle must be correspondingly rotated so that the laser device will make the groove at the correct point on the valve sealing face. To that end, the valve needle is rotated by a defined angle about its longitudinal axis and remains in this position until the groove has been made by the laser, and then rotates onward again. With grooves curved in an S shape, however, it is possible to rotate the valve needle continuously, so that a curved groove is created in the course of the motion of the laser along the longitudinal axis of the valve needle.
In a further advantageous feature, the width of the grooves varies, from their end facing away from the combustion chamber to their end facing toward the combustion chamber. In this respect, it is especially advantageous if the width decreases in that direction. As a result, a rapid diversion of the fuel from the annular groove and a corresponding reduction in throttling at the second edge of the annular groove are attained, and because of the decreasing cross section of the grooves toward the injection openings, the flow conditions between the valve seat and the valve sealing face at least approximately again correspond to those of the known fuel injection valves, so that identical inflow conditions into the injection openings are also attained.
In a further advantageous feature, the recesses are embodied as polished plane sections, which are embodied on the second conical face. Such polished plane sections can be produced with little effort, making economical manufacture possible.
In a further advantageous feature, the conical valve seat is adjoined toward the combustion chamber by a dead-end volume, from which the at least one injection opening extends. Advantageously, the grooves extend so far in the direction of the combustion chamber that they reach at least as far as the transitional edge between the conical valve seat and the dead-end volume. As a result, in addition to a pressure relief of the annular groove, the advantage is also attained that the throttling at the transitional edge is reduced, and hence the fuel can flow into the dead-end volume with fewer losses.
A further fuel injection valve according to the invention, having the definitive characteristics of claim 16, has the same advantage as the fuel injection valve of claim 1. However, in it, the recesses are embodied on the valve seat, and these recesses hydraulically connect the annular groove to a portion of the valve seat located on the combustion chamber side of the annular groove. Hydraulically, these recesses function identically, so that once again a pressure buildup in the annular groove upon a partial stroke of the valve needle is averted.
In an advantageous feature of the subject of claim 16, the grooves extend between the injection openings, which here begin at the valve seat. As a result, the inflow conditions into the injection openings are unchanged compared to the conventional injection valves until now, so that no adaptation has to be made in this respect. However, it may also be advantageous to use to use the grooves for a uniform inflow of the fuel into the injection openings. To that end, the grooves extend beyond the injection openings, so that if the valve needle comes to be in a slightly skewed position, the uniform inflow of fuel is not impaired.
It is especially advantageous if the recesses are produced by a laser process, since with it, it is economically possible to produce virtually arbitrarily structured surfaces that cannot be produced, or can be produced only at considerably greater effort, by mechanical processing methods.
Further advantages and advantageous features of the subject of the invention can be learned from the description and the drawings.
In the drawing, a fuel injection valve of the invention is shown. Shown are
a and
On its end toward the combustion chamber, the valve needle 5 is urged in the direction of the valve seat 12 by a constant or variable closing force. A suitable device for this is a spring, for instance, or a device that generates the closing force hydraulically. By means of a longitudinal motion of the valve needle 5 counter to the closing force, a gap between the valve sealing face 10 and the valve seat 12 is opened up, so that fuel can flow out of the pressure chamber 16 to the injection openings 14 and from there is injected into the combustion chamber of the engine. The corresponding opening force, oriented counter to the closing force, is generated here by the hydraulic force on parts of the valve sealing face 10 and by the pressure shoulder 7. By means of a variable pressure in the pressure chamber 16 or by a variation in the closing force on the valve needle 5, the ratio between the opening force and closing force can be varied and the valve needle 5 can be moved accordingly in the bore 3.
At the outset of the opening stroke motion of the valve needle 5, a high pressure prevails in the pressure chamber 16 and acts on the first conical face 20, which exerts some of the opening force on the valve needle 5. Immediately after the valve needle 5 lifts from the valve seat 12, a gap is opened up between the sealing edge 27 and the valve seat 12, through which gap fuel flows at high pressure out of the pressure chamber 16 into the annular groove 25, which until then was pressureless, so that the fuel pressure there rises. Although initially a slight annular gap is opened up between the second edge 29 and the valve seat 12, nevertheless because of the recesses 35 a wider flow cross section is available, so that the fuel is rapidly diverted from the annular groove 25, and the pressure rise there is only slight. Not until the further opening stroke motion, when a relatively large gap is opened up between the sealing edge 27 and the valve seat 12 and accordingly also between the second edge 29 and the valve seat 12 does a large amount of fuel flow at high pressure out of the pressure chamber 16 to the injection openings 14, so that a correspondingly high pressure now prevails in the annular groove 25 as well. At this instant, at which the valve needle 5 has completed its maximum opening stroke, the structured surface 35 no longer plays any decisive role in the flow conditions. At the onset of the opening stroke motion, because of the recesses 35, the hydraulic force from the pressure rise in the annular groove 25 is absent, so that the opening force is determined solely by the hydraulically effective surface area of the first conical face 10. The maximum opening stroke of the valve needle 5 is, as a rule, no longer than 0.2 mm.
The recesses 35 in the exemplary embodiment shown in
In
How far the groove 38 extend on the second conical face 22 in the direction of the combustion chamber is determined by the differential angle δ2 and by the location of the injection openings 14. Here the grooves 38 are the grooves 38 extend far enough that they extend beyond the injection openings 11. The grooves 38 are preferably produced in microstructured fashion; that is, they have a depth of preferably less than 50 μm. The width of the grooves 38, which are shown again in
In
In
In
The number of grooves 38 disposed over the circumference of the valve needle 5 depends on the desired cross section. It has proved advantageous in this respect for there to be at least eight grooves distributed over the circumference of the second conical face 22. However, a markedly larger number of grooves 38 may also be provided and instead embodied with a suitably lesser depth.
In
In
It may also be provided that recesses 35 are embodied both on the valve sealing face 10 and on the valve seat 12 and effect a corresponding hydraulic relief of the annular groove 25 in the partial stroke range. Arbitrary combinations of the exemplary embodiments shown in
The recesses 35 can be produced especially advantageously by means of a laser. With it, both a rough surface, as
Number | Date | Country | Kind |
---|---|---|---|
10245573.2 | Sep 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/01350 | 4/25/2003 | WO | 3/2/2005 |