Fuel injection valve with integrated spark plug

Information

  • Patent Grant
  • 6340015
  • Patent Number
    6,340,015
  • Date Filed
    Thursday, May 25, 2000
    24 years ago
  • Date Issued
    Tuesday, January 22, 2002
    22 years ago
Abstract
A fuel injection valve (1) having an integrated sparkplug for direct injection of fuel into the combustion chamber of an internal combustion engine and for igniting the fuel injected into the combustion chamber has a valve body (7) which, together with a valve closing body (10) operated by a valve needle (9), forms a seal seat. The valve body (7) and to some extent the valve needle (9) are surrounded radially by an insulating body (6). The insulating body (6) is in turn surrounded radially at least in part by a housing body (2). Ignition electrodes (15, 16) are provided on the valve body (7) and the housing body (2). The valve needle (9) has a first metal guide section (9a) guided in a swirl insert (14), a second metal guide section (9b) guided in the insulating body (6) and an insulating section (9c) arranged between the guide sections (9a, 9b). The guide sections (9a, 9b) are connected in a positive manner to the insulating section (9c).
Description




FIELD OF THE INVENTION




The present invention concerns a fuel injection valve having an integrated sparkplug.




BACKGROUND INFORMATION




A fuel injection valve having an integrated sparkplug for direct injection of fuel into the combustion chamber of an internal combustion engine and for igniting the fuel injected into the combustion chamber is discussed in from German Published Patent Application No. 196 38 025. With this fuel injection valve having an integrated sparkplug, a valve closing body that opens on the outside works together with a valve body to form a seal seat. The valve closing body is designed in one piece with a valve needle extending into the interior of the sleeve-shaped valve body. The valve needle is guided through the valve closing body on one end and through a guide ring provided at the inlet on the other end. The valve body can receive an electrical high voltage over a high-voltage cable and it has an ignition electrode on its spray end. The valve body is surrounded radially by a ceramic insulating body which is in turn surrounded by a metal housing body having another ignition electrode. The valve needle and the valve closing body, which is designed in one piece with the valve needle, are actuated in the opening direction by an armature working together with a solenoid. The armature acts by way of a tappet on an insulating spacer which is in contact with the guide ring of the valve needle.




One disadvantage of this design of a fuel injection valve having an integrated sparkplug is that the valve needle does not have a high-voltage insulating element. Therefore, the insulation is provided by the aforementioned spacer, which is connected to the valve needle only in a non-positive manner but not in a positive manner. Therefore, this design is suitable only for externally opening fuel injection valves. Since only an opening force can be transmitted via the spacer to the valve closing body but no closing force can be transmitted via the valve needle to the valve closing body, a valve closing spring must be integrated into the valve body to produce the closing force. It is believed that this leads to a relatively complicated design and thus to relatively high manufacturing and assembly costs.




Another fuel injection valve having an integrated sparkplug is discussed in European Published Patent Application No. 0 661 446. Again with this fuel injection valve having an integrated sparkplug, no insulating element is provided in the valve needle. Instead, the high voltage is supplied via the valve needle, which is insulated radially on the outside by complicated insulating bodies extending in the feed direction. With this unfavorable design, a total of four insulating bodies are necessary, leading to high manufacturing and assembly costs.




SUMMARY OF THE INVENTION




The fuel injection valve having an integrated sparkplug an exemplary embodiment of the present invention has the advantage that an insulating section which provides insulation in the axial direction is integrated into the valve needle, separating the two metal guide sections from one another. The magnetic needle is guided through the metal guide sections which may be made of hardened steel, for example, and therefore permit precision manufacturing and their surfaces have a low coefficient of friction. A first guide section is arranged on the spray end and may be designed in one piece with the valve closing body. The second metal guide section is arranged on the inlet end with regard to the insulating section arranged between the guide sections and is guided in the insulating body. The guide sections having the insulating section are also connected in a positive manner as well as in a non-positive manner, so that force can be transmitted via the valve needle in the opening direction as well as the closing direction. Therefore, it is not necessary to integrate a restoring spring inside the valve body. This yields a simple design which can be produced at a low manufacturing and assembly cost. The insulating body can be manufactured as an injection molded ceramic part at a low manufacturing cost. Since the insulating section is responsible only for the insulation and not for guidance of the valve needle, it is believed that no particularly high demands are made of the manufacturing accuracy and abrasion resistance of the insulating section.




The fuel injection valve an exemplary embodiment of the present invention having an integrated sparkplug has the advantage that the valve needle designed as a one-piece ceramic part with the valve closing body can be designed to be especially short, because no metal parts are used and the total length of the valve needle functions as an insulating path. Shortening the valve needle yields a definite reduction in weight, which in turn leads to relatively short switching times.




It is advantageous to design the insulating section of the valve needle as a ceramic sleeve body, because an especially low weight, and thus a short switching time, is obtained because of the material saved when the insulating section is designed as a sleeve body. The connection between the guide sections and the insulating section is preferably by way of connecting pins which engage in corresponding recesses. The connection can be accomplished by friction flow, gluing or even in part by shrink fit.




If the valve needle and the valve closing body are designed as a one-piece ceramic part, the valve closing body is preferably spherical or partially spherical in shape to prevent material from splintering out in the seat area.




The insulating body preferably has a recess at the side through which a high-voltage cable is guided to the valve body and is electrically connected to it. It is advantageous to fill the recess with a casting compound which provides electrical insulation, because this yields especially good protection of the welded or soldered junction of the high-voltage cable with the valve body. It may be especially advantageous for an electric burn-off resistor or an insulating film with high-voltage strength to be cast in the casting compound to improve insulation of the solder joint or weld.




One embodiment of the present invention is illustrated in simplified form in the drawing and explained in greater detail in the following description.











BRIEF DESCRIPTION OF THE DRAWING




The FIGURE shows a cross-section of a fuel injection valve having an integrated sparkplug according to an exemplary embodiment of the present invention.











DETAILED DESCRIPTION




The FIGURE shows a fuel injection valve having an integrated sparkplug for direct injection of fuel into a combustion chamber of an internal combustion engine with compression of a mixture and spark ignition and for igniting the fuel injected into the combustion chamber according to an exemplary embodiment of the present invention.




The fuel injection valve having an integrated sparkplug and labeled with reference number


1


in general has a first housing body


2


, which can be screwed into a receiving bore of a cylinder head (not shown) by a thread


3


, and also has a second housing body


4


and a third housing body


5


. The metal housing formed by housing bodies


2


,


4


,


5


surrounds an insulating body


6


which in turn surrounds radially on the outside a valve body


7


and at least partially a swirl insert


14


and a valve needle


9


extending in the interior of swirl insert


14


beyond inlet end


8


of valve body


7


. Valve needle


9


is connected at the spray end to conical valve closing body


10


which together with an inside conical face on spray end


11


of valve body


7


forms a seal seat. In the embodiment illustrated here, valve needle


9


and valve closing body


10


are designed in one piece. When valve closing body


10


is lifted up from the valve seating face of valve body


7


, valve closing body


10


releases an outlet opening


12


formed in valve body


7


, so that a conical spray jet indicated by line


13


is sprayed out. For a better peripheral distribution of fuel, at least one swirl groove


14




a


is provided in swirl insert


14


in the embodiment illustrated here.




First ignition electrodes


15


are provided on first housing body


2


and work together with second ignition electrodes


16


provided on valve body


7


to generate an ignition spark. In the embodiment shown here, ignition electrodes


15


,


16


are designed as partially parallel finger electrodes. A first ignition electrode


15


and a second ignition electrode


16


are arranged opposite one another in alternation at a predetermined electrode spacing. First ignition electrodes


15


carry ground potential, while second electrodes


16


can receive a high voltage. The lengths of ignition electrodes


15


and


16


are to be adapted to the beam angle and form of fuel jet


13


. Ignition electrodes


15


,


16


may be immersed in fuel jet


13


or fuel jet


13


may pass by ignition electrodes


15


,


16


at a slight distance, without ignition electrodes


15


,


16


being wetted by the fuel. Immersion of ignition electrodes


15


,


16


in gaps between individual jets produced by one or more outlet openings


12


is also conceivable.




Valve body


7


is preferably designed in two parts, a first body part


7




a


and a second body part


7




b


that are welded together at weld


17


to accommodate swirl insert


14


.




According to an exemplary embodiment of the present invention, valve needle


9


is divided into a first metal guide section


9




a


on the spray end, a second metal guide section


9




b


on the inlet end and a ceramic insulating section


9




c


which is sleeve-shaped in this embodiment. First guide section


9




a


is guided in swirl insert


14


mounted concentrically to valve body


7


. A second guidance of valve needle


9


is accomplished by second guide section


9




b


in insulating body


6


. To do so, lateral surface


19


of second guide section


9




b


works together with a bore


20


in insulating body


6


. Guide sections


9




a


and


9




b


which provide guidance are designed as metal parts and can be produced with the manufacturing accuracy required for the guidance. Because of the low surface roughness of the metal parts, there is only a low coefficient of friction on the guides. Insulating section


9




c


, however, may be produced as an injection molded ceramic part. Since insulating section


9




c


does not provide guidance for valve needle


9


, low demands are made regarding the dimensional accuracy and surface roughness. Therefore, no reworking of the injection molded ceramic part is necessary.




According to an exemplary embodiment of the present invention, guide sections


9




a


and


9




b


are joined to insulating section


9




c


by both positive and non-positive methods. In the embodiment illustrated here, guide sections


9




a


and


9




b


each have a pin


21


and


22


, respectively, inserted into a recess in insulating section


9




c


designed as a bore


23


. Preferably a connection is established between pins


21


and


22


and guide sections


9




a


and


9




b


by frictional engagement, gluing or to some extent even by shrink fitting. For a shrink-fit connection, it is advantageous if guide section


9




b


has a recess into which a pin of insulating section


9




c


can be inserted, in another exemplary embodiment shown here. Metal guide section


9




b


may then be heated before shrinkage, and the pin of insulating section


9




c


can be inserted into the recess when this guide section has been heated. When guide section


9




b


cools, it contracts, yielding a tight connection to insulating section


9




c.






Insulating section


9




c


is preferably designed in the form of a sleeve. Weight is saved due to the material saved in comparison with a solid body, thus resulting in shorter switching times of fuel injection valve


1


.




According to an another exemplary embodiment not shown here, it is also possible to design valve needle


9


and valve closing body


10


as a one-piece ceramic part. Valve needle


9


may then be designed shorter in comparison with the exemplary embodiment shown in the figure because valve needle


9


has insulating properties over its entire length. This yields weight savings for valve needle


9


, leading to shorter switching times. If valve needle


9


and valve closing body


10


are designed as a one-piece ceramic part, it is advantageous if valve closing body


10


is spherical or partially spherical to prevent material from splintering out at the seal seat.




Silicon nitride or zirconium oxide is suitable for achieving an especially low weight for insulating section


9




c


and for valve needle


9


with valve closing body


10


, which are designed as a one-piece ceramic part according to the alternative embodiment.




Second guide section


9




b


is connected to an armature


24


which works together with a solenoid


25


for electromagnetic operation of valve closing body


10


. A cable


26


is used to supply electric current to solenoid


25


. A field spool


27


accommodates solenoid


25


. A sleeve-shaped core


28


passes at least partially through solenoid


25


and is a distance away from armature


24


due to a gap (not shown in the Figure) in the closed position of the fuel injection valve. The magnetic flux circuit is closed by ferromagnetic parts


29


and


30


. Fuel flows through a fuel inlet connection


31


, which can be connected by a thread


32


to a fuel distributor (not shown), and into the fuel injection valve


1


having an integrated sparkplug. Fuel flows first through a fuel filter


33


and then into a longitudinal bore


34


in core


28


. An adjusting sleeve


36


, which has a hollow bore


35


and can be screwed into longitudinal bore


34


of core


28


, is provided in longitudinal bore


34


. Adjusting sleeve


36


is used to adjust the initial tension of a restoring spring


37


which acts on armature


24


in the closing direction. A locking sleeve


38


secures the adjustment of adjusting sleeve


36


.




Fuel flows further through a longitudinal bore


39


into second guide section


9




b


of valve needle


9


and enters a hollow space


41


of insulating body


6


at an axial recess


40


. Fuel flows from there into a longitudinal bore


42


of valve body


7


through which valve needle


9


also extends, and ultimately the fuel reaches swirl groove


14




a


of swirl insert


14


described above.




As described above, first ignition electrodes


15


connected to housing body


2


carry ground potential while second ignition electrodes


16


connected to valve body


7


carry a high voltage to generate ignition sparks. A high-voltage cable


50


which is inserted into insulating body


6


through a pocket-like recess


51


at the side supplies the high voltage. Bare end


52


of high-voltage cable


50


is soldered or welded to a contact clip


54


at a solder junction or weld


53


. Contact clip


54


clamps valve body


7


and establishes a secure electrical contact between bare end


52


of high-voltage cable


50


and valve body


7


. For better accessibility of solder junction or weld


53


, insulating body


6


has a radial bore


55


through which a soldering or welding tool can be guided to the solder junction or weld


53


. After establishing the soldered or welded connection, pocket-like recess


51


is filled with a casting compound


56


which provides electrical insulation. A burn-off resistor


57


integrated into high-voltage cable


50


may also be cast in casting compound


56


. For improved insulation of solder junction or weld


53


, a film


58


having high-voltage strength may be inserted into pocket-like recess


51


of insulating body


6


and also cast with casting compound


56


. Silicone, for example, is suitable for use as casting compound


56


.




Insulating body


6


and valve body


7


may be screwed together by a thread


60


. Furthermore, insulating body


6


may be screwed to housing body


2


with another thread


61


. Thread


60


and


61


are preferably secured with a suitable adhesive, although in the exemplary embodiment of the present invention, the adhesive does not come into direct contact with the fuel. Insulating body


6


may be manufactured inexpensively as an injection molded ceramic part. Valve body


7


and insulating body


6


may be screwed and glued to an assembly mandrel to compensate for alignment errors in the guidance of valve needle


9


.




The spatially close arrangement of burn-off resistor


57


to ignition electrodes


15


,


16


reduces the burn-off of ignition electrodes


15


,


16


and allows a solid metal jacketing of fuel injection valve


1


having an integrated sparkplug by metal housing bodies


2


,


4


and


5


, despite an increased electric capacitance between ignition electrodes


15


,


16


.



Claims
  • 1. A fuel injection valve associated with an integrated sparkplug for achieving a direct injection of a fuel into a combustion chamber of an internal combustion engine and for igniting the fuel injected into the combustion chamber, comprising:a valve body; a valve needle; a valve closing body operated by the valve needle and for forming a seal seat with the valve body; an insulating body radially surrounding the valve body and at least partially surrounding the valve needle, wherein the valve needle includes: a first metal guide section guided in the valve body, a second metal guide section guided in the insulating body, and an insulating section arranged between the first metal guide section and the second metal guide section, the first metal guide section and the second metal guide section being connected in a positive manner to the insulating section; a housing body radially surrounding the insulating body at least in part; and at least one ignition electrode provided on at least one of the valve body and the housing body.
  • 2. The fuel injection valve of claim 1, wherein the insulating section of the valve needle is formed by a ceramic sleeve body.
  • 3. The fuel injection valve of claim 2, wherein the connection between the insulating section and the first metal guide section and the second metal guide section is formed by one of a frictional engagement operation, a gluing operation, and a shrink fitting operation.
  • 4. The fuel injection valve of claim 1, wherein the first metal guide section and the second metal guide section each includes a respective connecting pin inserted into a recess in the insulating section.
  • 5. The fuel injection valve of claim 1, wherein:the insulating section includes a connecting pin, and the connecting pin is inserted into a recess of the second metal guide section.
  • 6. The fuel injection valve of claim 1, wherein:the insulating body includes a recess at a side through which a high-voltage cable is guided to the valve body and is electrically connected thereto, and the recess is filled with a casting compound that provides an electrical insulation.
  • 7. The fuel injection valve of claim 6, further comprising:an electric burn-off resistor cast in the casting compound and integrated with the high-voltage cable.
  • 8. The fuel injection valve of claim 6, wherein:the high-voltage cable is connected, by one of a solder connection and a weld connection, to one of the valve body and a contact clip clamping the valve body, and the one of the solder connection and the weld connection is covered by an insulating film having a high-voltage strength and being integrally cast in the casting compound.
  • 9. The fuel injection valve of claim 1, wherein the valve body includes two valve body parts that are joined together by a weld.
  • 10. A fuel injection valve associated with an integrated sparkplug for achieving a direct injection of a fuel into a combustion chamber of an internal combustion engine and for igniting the fuel injected into the combustion chamber, comprising:a valve body; a valve needle; a valve closing body operated by the valve needle and for forming a seal seat with the valve body, wherein the valve needle and the valve closing body are formed from a one-piece ceramic part; an insulating body radially surrounding the valve body and at least partially surrounding the valve needle; a housing body radially surrounding the insulating body at least in part; and at least one ignition electrode provided on at least one of the valve body and the housing body.
  • 11. The fuel injection valve of claim 10, further comprising:a first guide section arranged inside the valve body; and a second guide section arranged inside the insulating body, wherein the one-piece ceramic part is guided on the first guide section and on the second guide section.
  • 12. The fuel injection valve of claim 10, wherein a shape of the valve closing body is one of spherical and partially spherical.
  • 13. The fuel injection valve of claim 10, wherein:the insulating body includes a recess at a side through which a high-voltage cable is guided to the valve body and is electrically connected thereto, and the recess is filled with a casting compound that provides an electrical insulation.
  • 14. The fuel injection valve of claim 13, further comprising:an electric burn-off resistor cast in the casting compound and integrated with the high-voltage cable.
  • 15. The fuel injection valve of claim 13, wherein:the high-voltage cable is connected, by one of a solder connection and a weld connection, to one of the valve body and a contact clip clamping the valve body, and the one of the solder connection and the weld connection is covered by an insulating film having a high-voltage strength and being integrally cast in the casting compound.
  • 16. The fuel injection valve of claim 10, wherein the valve body includes two valve body parts that are joined together by a weld.
Priority Claims (1)
Number Date Country Kind
198 28 848 Jun 1998 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE99/00861 WO 00
Publishing Document Publishing Date Country Kind
WO00/00737 1/6/2000 WO A
US Referenced Citations (17)
Number Name Date Kind
2255203 Weigand Sep 1941 A
2403440 Jansson Jul 1946 A
3058453 May Oct 1962 A
3060912 May Oct 1962 A
3060913 May Oct 1962 A
3081758 May Mar 1963 A
3373724 Papst Mar 1968 A
3795214 Shook, II Mar 1974 A
3926169 Leshner et al. Dec 1975 A
4736718 Linder Apr 1988 A
4967708 Linder et al. Nov 1990 A
5409165 Carroll, III et al. Apr 1995 A
5497744 Nagaosa et al. Mar 1996 A
5531199 Bryant et al. Jul 1996 A
5607106 Bentz et al. Mar 1997 A
5715788 Tarr et al. Feb 1998 A
5983855 Benedikt et al. Nov 1999 A
Foreign Referenced Citations (4)
Number Date Country
632198 Jan 1995 EP
0 661 446 Jul 1995 EP
05 240126 Sep 1993 JP
06 050241 Feb 1994 JP