Fuel injection valve

Information

  • Patent Grant
  • 7500472
  • Patent Number
    7,500,472
  • Date Filed
    Wednesday, April 14, 2004
    20 years ago
  • Date Issued
    Tuesday, March 10, 2009
    15 years ago
Abstract
A fuel injection valve for an automotive internal combustion engine comprises a needle valve and an opposite member which are in slidable contact with each other in presence of fuel. A hard carbon thin film is coated on at least one of the sliding sections of the base materials of the needle valve and the opposite member. The hard carbon thin film has a surface hardness ranging from 1500 to 4500 kg/mm2 in Knoop hardness, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (Ry) (μm) which satisfies a relationship represented by the following formula (A): Ry<(0.75−Hk/8000)×h+0.0875  (A)
Description
BACKGROUND OF THE INVENTION

This invention relates to improvements in a sliding member which is lubricated with fuel, for an automotive vehicle, and more particularly to the improvements in a fuel injection valve for an automotive vehicle, including a needle valve whose sliding section (in slidable contact with an opposite member) is coated with a particular hard carbon thin film so as to be high in durability reliability and realize a low friction coefficient.


Recently, requirements for improving fuel economy and exhaust gas emission control to automotive vehicles have become further stringent, and therefore sliding conditions at sliding sections which are lubricated with fuels become further severe in order to suppress friction at such sliding sections. It has been proposed as a measure to suppress the friction at the sliding sections, that a hard thin film of chromium nitride, titanium nitride or the like is formed at the sliding section of the fuel injection valve as disclosed in Japanese Patent Provisional Publication No. 7-63135, the entire disclosure of which is hereby incorporated by reference.


The largest merits of forming such a hard thin film resides in a point where a remarkably high surface hardness is obtained as compared with a surface treatment such as plating and a surface-hardening treatment such as a heat treatment. By applying such a hard thin film onto the sliding section, it is expected that a wear resistance can be greatly improved. Additionally, under lubrication, such a hard thin film can suppress the degradation of the surface roughness due to wear, and therefore it prevents an opposite member from wearing due to the degraded surface roughness and prevents a frictional force from increasing due to an increase in direct contact (metal contact) with the opposite member, thereby making it possible to maintain a lubricating condition at an initial state for a long time. Furthermore, since the hard thin film itself is hard, it can be possible to make the opposite member adaptable to the hard thin film, and accordingly it can be expected to provide a function to obtain a smoothened surface roughness. As a result, it can be expected that the surface roughness of the both the hard thin film and the opposite member are improved in the lubricating condition.


Now, it has been known that an amorphous carbon film such as a diamond-like carbon (DLC) film which is a kind of hard thin films is high in hardness itself and has a characteristic serving as a solid lubricant itself, so that it exhibits a remarkably low friction coefficient under no lubrication.


As microscopically viewed in lubricating oil, the sliding section is divided into a section where the hard thin film slidably contacts with the opposite member through an oil film, and another section where projections due to the surface roughness (shape) of both the hard thin film and the opposite member directly contact with the facing member making a metal contact. At the latter section where the metal contact is made, an effect of lowering the frictional force generated there can be expected similarly in case of no lubrication, by applying a DLC film at the section. In this regard, it has been investigated to apply the DLC film as a technique for lowering friction in an internal combustion engine.


However, a hard thin film formed by a PVD process or a CVD process is high in internal stress as compared with a surface treatment such as plating and remarkably high in hardness. Accordingly, if the hard thin film is applied to the sliding section of machine parts, the hard thin film tends to peel off from a base material or to form its crack. Concerning such peeling-off of the hard thin film, it has been proposed to soften the internal stress so as to make an improvement by providing a suitable intermediate layer taking account of adhesiveness between the hard thin film and the base material or by applying a multiple layer structure of the hard thin film.


In connection with formation of cracks in the hard thin film itself and peeling-off of the hard thin film due to the cracks, there have hardly been conventional techniques which improve the hard thin film to prevent them by regulating the surface roughness and shape of the hard thin film (particularly, a hard carbon thin film) and them of the opposite member. Only measures which have been hitherto proposed are to form a hard carbon thin film consisting of C, H, Si and inevitable impurities is formed at the surface of the sliding section, regulating the thickness and hardness of the hard carbon thin film as disclosed in Japanese Patent Provisional Publication No. 2002-332571.


SUMMARY OF THE INVENTION

However, as discussed above, although some studies have been made on sliding of the hard carbon thin film consisting of C, H, Si and inevitable impurities, it has not been found to study sliding upon making total judgments on the components, thickness, hardness and surface roughness of the hard carbon thin film, and fuels to be used for fuel injection valves. Particularly, the above hard carbon thin film strongly tends to be brittle as compared with a film of titanium nitride (TiN) or chromium nitrate (CrN), and therefore not only a film formation control in accordance with the property of the film is required but also influences by additives or the like contained in fuel to be used for the fuel injection valve cannot be disregarded. Thus, in the present status, the relationship among the above various matters has not still become apparent.


It is an object of the present invention is to provide an improved fuel injection valve which can effectively overcome drawbacks encountered in conventional fuel injection valves.


Another object of the present invention is to provide an improved fuel injection valve which can ensure its durability reliability, realize a low friction coefficient and is improved in a seizure resistance while being improved in its response characteristics under the realized low friction coefficient.


A further object of the present invention is to provide an improved fuel injection valve whose sliding section is coated with a hard carbon thin film, in which the hard carbon thin film can be effectively prevented from forming crack, peeling-off and the like which occur when the hard carbon thin film which is generally seemed to be low in ductility is applied to the sliding section because it is extremely high in hardness as compared with a film formed by a surface treatment such as plating or the like.


According to the present invention, a fuel injection valve comprises a needle valve including a base material. An opposite member is provided including a base material whose sliding section is in slidable contact with a sliding section of the base material of the needle valve in presence of fuel for an automotive vehicle. Additionally, a hard carbon thin film is coated on at least one of the sliding sections of the base materials of the needle valve and the opposite member. The hard carbon thin film has a surface hardness ranging from 1500 to 4500 kg/mm2 in Knoop hardness, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (Ry) (μm) which satisfies a relationship represented by the following formula (A):

Ry<(0.75−Hk/8000)×h+0.0875  (A)


where h is the thickness (μm) of the hard carbon thin film; Hk is the surface hardness in Knoop hardness (kg/mm2) of the hard carbon thin film.


BRIEF DESCRIPTION OF THE DRAWING

The single FIGURE is an enlarged fragmentary sectional view of a fuel injection valve according to the present invention.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to the single FIGURE, a fuel injection valve 10 according to the present invention comprises a needle valve 12 which is a sliding member used in presence of fuel 14 for an automotive vehicle. The needle valve 12 includes a base material or main body section 12a made of iron-based material or steel, or aluminum-based material. The base material 12a of the needle valve 12 has a sliding section or surface 12b which is in slidable contact with a sliding section or surface 16b of a base material 16a of an opposite member 16.


In such a fuel injection valve, the opposite member 16 is a guide (for the needle valve) or a housing constituting the fuel injection valve, so that a hard carbon thin film 18 is formed on the sliding surface 12a of the base material 12a so as to be slidably coatactable with the opposite member. It will be understood that the base material or main body section 16a of the opposite member may be coated at its sliding surface 16a with the hard carbon thin film in place of the base material of the needle valve, which will provide the same effects as those in case of the needle valve being coated with the hard carbon thin film. Otherwise, the hard carbon thin film 18 may be formed both on the sliding surfaces 12b, 16a of the base materials 12a,16a of the needle valve 12 and the opposite member 16


The base material made of the iron-based material or the like preferably has a surface roughness (center line average roughness) Ra of not larger than 0.03 μm though the surface roughness may be affected by kinds and properties of the sliding member and the automotive fuel, in a state where it has not still been coated with the hard carbon thin film of a certain material. If the surface roughness exceeds 0.03 μm, projecting portions due to the surface roughness of the hard carbon thin film causes a local Hertz's contact pressure to the opposite member to increase, thereby resulting in induction of formation of crack in the hard carbon thin film. The mechanism of this phenomena will be discussed in detail after.


The needle valve of the fuel injection valve according to the present invention is operated in presence of fuel which serves also as a lubricating oil. The fuel contains at least one of ester-based additive and amine-based additive, more specifically, at least one of octane booster, cetane booster, antioxidant, metal deactivator, detergent-dispersant, deicing agent and corrosion inhibitor. It is to be noted that lowering in friction coefficient and improvement in wear resistance can be effectively achieved in the needle valve or the opposite member in presence of such additive(s).


Examples of such additives are fatty acid ester and fatty acid amine compound which have a straight or branched hydrocarbon chain (or group) having a carbon number ranging from 6 to 30, preferably a carbon number ranging from 8 to 24. The additives can be used singly or in suitable combination (or as a mixture). If the carbon number is not within the range of from 6 to 30, the friction coefficient lowering effect cannot be sufficiently obtained. Examples of fatty acid ester are esters which are formed from fatty acid having the straight or branched hydrocarbon chain having the carbon number ranging from 6 to 30 and aliphatic monohydric alcohol or aliphatic polyhydric alcohol. Specific examples of the fatty acid ester compound are glycerol monooleate, glycerol dioleate, sorbitan monooleate, sorbitan dioleate, and the like. Examples of fatty acid amine compound are aliphatic monoamine or alkylene oxide adducts thereof, aliphatic polyamines, imidazoline compound and the like, and derivatives thereof. Specific examples of the fatty acid amine compound are laurylamine, lauryldiethylamine, stearylamine, oleylpropylenediamine, and the like.


Next, the hard carbon thin film coated on the sliding section of the sliding member will be discussed in detail.


The hard carbon thin film used for the fuel injection valve is mainly formed of carbon and is typically a film formed of only carbon except for inevitable impurities. The hard carbon thin film is preferably a DLC (diamond-like carbon) thin film which is formed by a variety of PVD processes, more specifically by an arc ion plating process.


The hard carbon thin film has a surface hardness (Knoop hardness) ranging from 1500 to 4500 kg/mm2, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (the maximum height: μm) Ry represented by the following formula (A):

Ry<(0.75−Hk/8000)×h+0.0875  (A)


where h is the thickness (μm) of the hard carbon thin film; Hk is the Knoop hardness (kg/mm2) of the hard carbon thin film.


The above formula (A) has been established on the basis of results of analysis made on the experiments in which hard carbon thin films by PVD processes such as the arc ion plating process are formed or coated at the sliding sections of a variety of sliding members, and then the hard carbon thin films were slidingly moved to opposite members. Particularly, the above formula (A) is determined particularly by taking account of relationships among the hardness, surface roughness and thickness of the hard carbon thin films, the shape of the base materials, and the surface roughness and shape of the opposite members particularly in connection with the facts that flaws are formed at the hard carbon thin films and peeling-off of the hard carbon film occurred owing to the flaws during sliding movement of the hard carbon thin film.


Specifically, in all cases that the flaws are formed at the hard carbon thin films upon the sliding movements of the hard carbon thin films, the hard carbon thin films make their cracks so as to microscopically peeled off (forming peeled pieces of the hard carbon thin film) thereby forming the flaws, in which the thus produced peeled piece is dragged so that the flaws were developed further into larger flaws. In this regard, the present inventors have found that factors or causes for producing the flaws are loads to the hard carbon thin films in the all cases, upon which further studies have been made by the present inventors, thus deriving the relationship of the above formula (A).


In contrast, in case that consideration is made only on a Hertz's contact pressure supposed from a line contact between a flat sliding member and an opposite member having a simple curvature as in a conventional technique, it is supposed that such crack does not occur if the film thickness of a hard carbon thin film is relatively thick over a certain level, and therefore the relationship of the above formula (A) is disregarded.


Here, one of causes for making the load to the hard carbon thin film excessive is known to be deposit formed in the hard carbon thin film. This deposit formation is a peculiar phenomena made in a film formed by PVD process such as the arc ion plating process. During formation of the hard carbon thin film, particles coming flying from a target as a raw material of the hard carbon thin film are not in a state of single ion or atom and therefore are in a state of cluster or in a molten state. Thus, the particles in the cluster state or the molten state come flying to the surface of the base material, in which the particles remain as they are in the hard carbon thin film. Additionally, the hard carbon thin film grows around the particles in such a manner as to be piled up, so that the particles are distributed as hard granular projections in the hard carbon thin film.


Such deposits or granular projections tend to readily fall off during sliding movement of the hard carbon thin film. Accordingly, when the deposits or granular projections are caught up in a contacting section between the hard carbon thin film and the opposite member, a pressing force from the opposite member is transmitted through the deposits or granular projections to the hard carbon thin film, in which a local pressure at this site is much higher than a Hertz's contact pressure which is calculated based on macro curvature of the opposite member taking account of elastic deformation, and therefore the local pressure can become a cause for inducing formation of crack in the hard carbon thin film. Further, a shearing force due to sliding contact of the hard carbon thin film to the opposite member is added to the above local pressure, so that flaws develop linearly toward the outer periphery of the hard carbon thin film. This will cause a macro peeling of the hard carbon thin film itself.


Another cause for making the load to the hard carbon thin film excessive is the fact that the opposite member is high in surface roughness. This cause is classified into a first case where projections due to this high surface roughness increases a local Hertz's contact pressure and a second case where a line contact between the sliding member and the opposite member becomes a point contact when the flatness of the sliding member and the opposite member is insufficient. Particularly in the second case, crack of the hard carbon thin film may be largely promoted under a combination effect with the above-mentioned deposits,


Besides, in connection with the establishment of the above formula (A), it has become apparent by the analysis that the thickness and hardness of the hard carbon thin film may become factors or causes for formation of crack. More specifically, concerning the thickness, as the thickness of the hard carbon thin film increases, the deformation amount of the hard carbon thin film decreases in case that a particle is pressed at a certain load against the hard carbon thin film, thereby increasing a resistance against the formation of crack relative to the load applied to the hard carbon thin film. As a result, in order to realize a good lubricating condition, a certain film thickness of the hard carbon thin film is required in accordance with the load of sliding conditions of the sliding member. Concerning the harness, in general, a hardness and a ductility of a film are in a contradictory relationship, so that it is known that the ductility lowers as the hardness of the film increases. More specifically, the fact that the hardness of the film is low to a certain degree increases a resistance of the film against formation of crack. It will be understood that this has been also taken into consideration in order to establish the above formula (A).


Hereafter, restriction conditions for the above formula (A) will be discussed in detail.


First, a restriction condition that the film thickness of the hard carbon thin film is not smaller than 0.3 μm is set because crack is unavoidably formed if the film thickness is smaller than 0.3 μm upon taking account of the input force from the corresponding opposite member. Another restricted condition that the film thickness is not larger than 2.0 μm is set because a large residual stress is generated at the step of formation of the hard carbon thin film if the film thickness exceeds 2.0 μm, which leads to a problem of the base material itself warping. Warping of the hard carbon thin film serves to promote the point contact of the hard carbon thin film to the opposite member, and therefore the film thickness exceeding 2.0 μm becomes a factor or cause for indirectly promoting formation of crack of the hard carbon thin film upon an insufficient contact between the sliding member and the opposite member.


The surface roughness of the hard carbon thin film is derived from the relationship between the hardness and thickness of the hard carbon thin film, as set forth below.


An indentation depth h′ (provided by particle of the deposit or by projections due to the roughness of the sliding surface) allowable for the hard carbon thin film having the Knoop hardness Hk is experimentally represented by the following equation (1):

h′/h=0.6−Hk/10000  (1)


where h is the thickness of the hard carbon thin film.


Concerning the surface roughness Ry of the hard carbon thin film, it has been found that a relationship represented by the following equation (2) is established as a result of study on a variety of films:

a=0.8Ry−0.07  (2)


where a is the height of the deposit remaining in the film.


In case that flaw, crack due to the flaw, or peeling of the film is caused by the deposit present in the hard carbon thin film, it can be prevented from occurrence by controlling the surface roughness of the hard carbon thin film, and therefore it is sufficient that a<h′ is satisfied under the fact that the deposit serves as the indentation depth as it is.


Thus, from the above relationship, the above formula (A: Ry<(0.75−Hk/8000)×h+0.0875) is derived.


Additionally, it is preferable that the amount of hydrogen contained as an impurity in the hard carbon thin film is not more than 0.5 atomic %. More specifically, hydrogen is an element which is unavoidably contained or mixed in the hard carbon thin film for the reason why CH (hydrocarbons) based gas is used as a carbon supply source when the hard carbon thin film is formed, for example, by the CVD process. If the content of hydrogen exceeds 0.5 atomic %, the hardness of the hard carbon thin film is lowered thereby degrading the surface roughness of the hard carbon thin film, thus providing a tendency of occurring deterioration of friction.


Next, an appropriate range of the base material to be coated with the hard carbon thin film will be discussed.


Steel such as stainless steel or aluminum-based alloy for weight-lightening is used as the base material to be coated with the hard carbon thin film. The surface roughness of the base material before being coated with the hard carbon thin film influences a surface roughness of the hard carbon thin film after being formed on the base material because the film thickness of the hard carbon thin film is very small. As a result, in case that the surface roughness of the base material is high, projections due to the roughness of the surface of the hard carbon thin film increases a local Hertz's contact pressure, thereby providing a cause for inducing formation of crack in the hard carbon thin film.


The above-mentioned surface roughness Ra (center line average roughness) represents a value which is obtained by averaging the total of the absolute values of deviations of measured lines from the average line of a roughness curve. The maximum height Ry (Rmax) represents the sum of the height of the highest peak and the depth of the deepest trough. The surface roughness Ra and the maximum height Ry are discussed respectively as Ra75 and Rz in JIS (Japanese Industrial Standard) B 0601 (:2001). In Examples and Comparative Examples discussed hereafter, measurement of the surface roughness was made by using a surface roughness tester under conditions where a measuring length was 48 mm, a measuring speed was 0.5 mm/sec., and a measuring pitch was 0.5 μm.







EXAMPLES

The present invention will be more readily understood with reference to the following Examples in comparison with Comparative Examples; however, these Examples are intended to illustrate the invention and are not to be construed to limit the scope of the invention.


Example 1

A column-like test piece as a base material having a diameter of 18 mm and a length of 22 mm was cut out from a raw material of stainless steel. The surface of this test piece was finished to have a surface roughness Ra of 0.03 μm. Thereafter, a DLC thin film (hard film) was formed at the finished surface of the test piece by an arc ion plating process (PVD), thus producing a specimen of this Example. The formed DLC thin film had a Knoop hardness Hk of 2250 kg/mm2, a maximum height Ry of 0.04 μm, and a thickness h of 0.5 μm, and further had a value (of the right side of the formula (A)) of 0.32.


Comparative Example 1

A column-like test piece which was the same as that in Example 1 was used as a base material. This column-like test piece was used as a specimen of this Comparative Example as it is, without the DLC thin film being formed at the finished surface of the test piece.


Comparative Example 2

A column-like test piece which was the same as that in Example 1 was used as a base material. Thereafter, a TiN film was formed at the finished surface of the test piece, thus producing a specimen of this Comparative Example.


Comparative Example 3

A column-like test piece which was the same as that in Example 1 was used as a base material. Thereafter, a Cr2N film was formed at the finished surface of the test piece, thus producing a specimen of this Comparative Example.


Comparative Example 4

A column-like test piece which was the same as that in Example 1 was used as a base material. The surface of this test piece was finished to have a surface roughness Ra of 0.1 μm. Thereafter, a DLC thin film as same as that in Example 1 was formed at the finished surface of the test piece by an arc ion plating process (PVD), thus producing a specimen of this Example.


Evaluation Test 1

Each of the specimens of Example and Comparative Examples was subjected to a frictional wear test under test conditions set forth below to measure a friction coefficient and a seizure load at which the specimen occurs its seizure to an opposite member with which the specimen was in sliding contact. Results of this test were tabulated in Table 1.


Test Conditions


(a) The opposite member: a disc member (test piece) formed of chromium molybdenum steel and having a diameter of 24 mm and a thickness of 7 mm;


(b) A test system: SRV Test System (Machine No. 39903163) produced by Optimol Instruments Prüftechnik GmbH, in which the specimen made its reciprocating motion upon sliding contact with the disc member (the opposite member);


(c) A frequency of the reciprocating motion: 50 Hz


(d) A load applying manner: a load applied to the specimen was increased at a rate of 130 N/min.;


(e) A sliding width: 1 mm; and


(f) A test oil: Regular gasoline (in Japan) which was present between the specimen and the disc member.


Evaluation Test 2

Needle valves of fuel injection valves for a gasoline-fueled internal combustion engines were produced respectively corresponding to the specimens of the above Example and Comparative Examples. Each needle valve was produced by coating a base material with a hard film as same as that of the Example or Comparative Example except for the needle valve corresponding to Comparative Example 1. Each needle valve was assembled in a fuel injection valve. Then, a delay in a response time of the fuel injection valve was measured thereby evaluating a response characteristics of the fuel injection valve. Results of the evaluation test 2 were tabulated also in Table 1. The results of the response characteristics are shown as relative values to a standard value (1.00) which is a delay in the response time in the needle valve corresponding to Comparative Example 1.














TABLE 1









Surface

Test results of




roughness

frictional wear test













Ra (μm) of


Seizure
Evaluation of



base
Hard
Frictional
load
response


Item
material
film
coefficient
(N)
characteristics















Example 1
0.03
DLC
0.10
1040
0.80


Comparative

Nil
0.18
650
1.00


Example 1


Comparative

TiN
0.17
710
0.96


Example 2


Comparative

Cr2N
0.14
800
0.92


Example 3











Comparative
0.1
DLC
Hard film peeled off



Example 4


during test (no





measurement was





possible)









As apparent from the test results in Table 1, Example 1 (and the corresponding needle valve of the fuel injection valve) in which the base material was coated with the DLC thin film as the hard carbon thin film exhibits a low friction coefficient, a high seizure load and a high response characteristics as compared with Comparative Examples 1 to 3 in which the base material was coated with no hard film, or coated with the TiN film or Cr2N film. Additionally, even in case that the base material was coated with the same DLC thin film, the thin film was unavoidably peeled off during the test in the event that the surface roughness of the base material before being coated with the thin film had been rougher than that in Example 1, as seen from Comparative Example 4.


As appreciated from the above, according to the present invention, the hard carbon thin film, particularly DLC thin film, is suitably controlled in its surface roughness or shape in accordance with the surface hardness and the film thickness. Therefore, the hard carbon thin film can be effectively prevented from cracking, peeling-off and the like which tend to occur when the hard carbon thin film is applied to a sliding section of a fuel injection valve of an automotive vehicle. As a result, the fuel injection valve can ensure its durability reliability, realize a low friction coefficient and be improved in a seizure resistance while being improved in its response characteristics under the realized low friction coefficient.


In the fuel injection valve according to the present invention, a force input condition of load allowable by the hard carbon thin film is determined in accordance with the thickness and hardness of the hard carbon thin film, particularly of the DLC thin film. Accordingly, by suitably regulating factors such as the surface roughness, shape and the like of the hard carbon thin film relative to sliding conditions at the given film and the section to which the film is applied, the force input condition is limited within a certain range, so that the film can be previously prevented from occurrence of crack and peeling-off at the section to which the film is applied, while maintaining its function as a film for a long time.


The entire contents of Japanese Patent Application P2003-110398 (filed Apr. 15, 2003) are incorporated herein by reference.


Although the invention has been described above by reference to certain embodiments and examples of the invention, the invention is not limited to the embodiments and examples described above. Modifications and variations of the embodiments and examples described above will occur to those skilled in the art, in light of the above teachings. The scope of the invention is defined with reference to the following claims.

Claims
  • 1. A fuel injection valve comprising: a needle valve including a base material;an opposite member including a base material whose sliding section is in slidable contact with a sliding section of the base material of the needle valve in presence of fuel for an automotive vehicle; anda hard carbon thin film coated on at least one of the sliding sections of the base materials of the needle valve and the opposite member, the hard carbon thin film having a surface hardness ranging from 1500 to 4500 kg/mm2 in Knoop hardness, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (Ry) (μm) which satisfies a relationship represented by the following formula (A): Ry <(0.75−Hk/8000)×h +0.0875  (A)where h is the thickness (μm) of the hard carbon thin film; and Hk is the surface hardness in Knoop hardness (kg/mm2) of the hard carbon thin film.
  • 2. A fuel injection valve as claimed in claim 1, wherein the fuel for an automotive vehicle contains at least one additive selected from the group consisting of an ester-based additive and an amine-based additive.
  • 3. A fuel injection valve as claimed in claim 2, wherein the at least one additive is at least one additive selected from the group consisting of octane booster, cetane booster, antioxidant, metal deactivator, detergent-dispersant, deicing agent, and corrosion inhibitor.
  • 4. A fuel injection valve as claimed in claim 1, wherein the hard carbon thin film contains hydrogen atom in an amount of not more than 0.5 atomic %.
  • 5. A fuel injection valve as claimed in claim 1, wherein the hard carbon thin film is a diamond-like carbon thin film.
  • 6. A fuel injection valve as claimed in claim 5, wherein the diamond-like carbon film is formed by an arc ion plating process.
  • 7. A fuel injection valve as claimed in claim 1, wherein the at least one of the sliding sections of the base materials of the needle valve and the opposite member has a surface roughness (Ra) of not more than 0.03 μm in a condition before the at least one of the sliding sections is coated with the hard carbon thin film.
Priority Claims (1)
Number Date Country Kind
2003-110398 Apr 2003 JP national
US Referenced Citations (382)
Number Name Date Kind
1461 Day Dec 1839 A
2716972 Farny et al. Sep 1955 A
2982733 Wright et al. May 1961 A
3211647 O'Halloran et al. Oct 1965 A
3790315 Emanuelsson et al. Feb 1974 A
3846162 Bloom Nov 1974 A
3932228 Sugiyama et al. Jan 1976 A
4031023 Musser et al. Jun 1977 A
4367130 Lemelson Jan 1983 A
4385880 Lemelson May 1983 A
4538929 Ehrentraut et al. Sep 1985 A
4554208 MacIver et al. Nov 1985 A
4645610 Born et al. Feb 1987 A
4702808 Lemelson Oct 1987 A
4712982 Inagaki et al. Dec 1987 A
4755237 Lemelson Jul 1988 A
4755426 Kokai et al. Jul 1988 A
4783368 Yamamoto et al. Nov 1988 A
4834400 Lebeck May 1989 A
4842755 Dunn Jun 1989 A
4859493 Lemelson Aug 1989 A
4874596 Lemelson Oct 1989 A
4919974 McCune et al. Apr 1990 A
4933058 Bache et al. Jun 1990 A
4943345 Asmussen et al. Jul 1990 A
4960643 Lemelson Oct 1990 A
4974498 Lemelson Dec 1990 A
4980021 Kitamura et al. Dec 1990 A
4980610 Varga Dec 1990 A
4981717 Thaler Jan 1991 A
4988421 Drawl et al. Jan 1991 A
4992082 Drawl et al. Feb 1991 A
4992187 Adams et al. Feb 1991 A
5000541 DiMarcello et al. Mar 1991 A
5021628 Lemelson Jun 1991 A
5032243 Bache et al. Jul 1991 A
5036211 Scott Jul 1991 A
5040501 Lemelson Aug 1991 A
5067826 Lemelson Nov 1991 A
5077990 Plath Jan 1992 A
5078848 Anttila et al. Jan 1992 A
5087608 Chan et al. Feb 1992 A
5096352 Lemelson Mar 1992 A
5110435 Haberland May 1992 A
5112025 Nakayama et al. May 1992 A
5127314 Swain Jul 1992 A
5131941 Lemelson Jul 1992 A
5132587 Lemelson Jul 1992 A
5142785 Grewal et al. Sep 1992 A
5143634 Quinga et al. Sep 1992 A
5148780 Urano et al. Sep 1992 A
5187021 Vydra et al. Feb 1993 A
5190807 Kimock et al. Mar 1993 A
5190824 Itoh Mar 1993 A
5202156 Yamamoto et al. Apr 1993 A
5205188 Repenning et al. Apr 1993 A
5205305 Yamakita Apr 1993 A
H1210 Jansen Jul 1993 H
5232568 Parent et al. Aug 1993 A
5237967 Willermet et al. Aug 1993 A
5249554 Tamor et al. Oct 1993 A
5255783 Goodman et al. Oct 1993 A
5255929 Lemelson Oct 1993 A
5284394 Lemelson Feb 1994 A
5288556 Lemelson Feb 1994 A
5295305 Hahn et al. Mar 1994 A
5299937 Gow Apr 1994 A
5317938 de Juan, Jr. et al. Jun 1994 A
5326488 Minokami et al. Jul 1994 A
5332348 Lemelson Jul 1994 A
5334306 Dautremont-Smith et al. Aug 1994 A
5349265 Lemelson Sep 1994 A
5358402 Reed et al. Oct 1994 A
5359170 Chen et al. Oct 1994 A
5360227 Lemelson Nov 1994 A
5380196 Kelly et al. Jan 1995 A
5401543 O'Neill et al. Mar 1995 A
H1461 DiVita et al. Jul 1995 H
5432539 Anderson Jul 1995 A
5433977 Sarin et al. Jul 1995 A
H1471 Braun et al. Aug 1995 H
5443032 Vichr et al. Aug 1995 A
5447208 Lund et al. Sep 1995 A
5456406 Lemelson Oct 1995 A
5458754 Sathrum et al. Oct 1995 A
5461648 Nauflett et al. Oct 1995 A
5462772 Lemelson Oct 1995 A
5464667 Köhler et al. Nov 1995 A
5466431 Dorfman et al. Nov 1995 A
5479069 Winsor Dec 1995 A
5482602 Cooper et al. Jan 1996 A
5491028 Sarin et al. Feb 1996 A
5497550 Trotta et al. Mar 1996 A
5509841 Winsor Apr 1996 A
5516729 Dawson et al. May 1996 A
5529815 Lemelson Jun 1996 A
5531878 Vadgama et al. Jul 1996 A
5541566 Deeney Jul 1996 A
5547716 Thaler Aug 1996 A
5551959 Martin et al. Sep 1996 A
5552675 Lemelson Sep 1996 A
5568391 Mckee Oct 1996 A
5593719 Dearnaley et al. Jan 1997 A
5616372 Conley et al. Apr 1997 A
5619889 Jones et al. Apr 1997 A
5628881 Lemelson May 1997 A
5630275 Wexler May 1997 A
5630953 Klink May 1997 A
5653300 Lund et al. Aug 1997 A
5669144 Hahn et al. Sep 1997 A
5672054 Cooper et al. Sep 1997 A
5688557 Lemelson et al. Nov 1997 A
5707409 Martin et al. Jan 1998 A
5714202 Lemelson et al. Feb 1998 A
5719109 Tokashiki et al. Feb 1998 A
5723207 Lettington et al. Mar 1998 A
5731046 Mistry et al. Mar 1998 A
5735769 Takemura et al. Apr 1998 A
5740941 Lemelson Apr 1998 A
5771873 Potter et al. Jun 1998 A
5775817 Gottemoller et al. Jul 1998 A
5786038 Conley et al. Jul 1998 A
5790146 Anderson Aug 1998 A
5793390 Claflin et al. Aug 1998 A
5794801 Lemelson Aug 1998 A
5799549 Decker et al. Sep 1998 A
5806557 Helge Sep 1998 A
5824387 Boutaghou et al. Oct 1998 A
5834708 Svetal et al. Nov 1998 A
5843571 Sho Dec 1998 A
5851962 Kaga Dec 1998 A
5866195 Lemelson Feb 1999 A
5871805 Lemelson Feb 1999 A
5881444 Schaefer et al. Mar 1999 A
5901021 Hirano et al. May 1999 A
5910940 Guerra Jun 1999 A
5927897 Attar Jul 1999 A
5937812 Reedy et al. Aug 1999 A
5940975 Decker et al. Aug 1999 A
5945214 Ma et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5952102 Cutler Sep 1999 A
5958261 Offer et al. Sep 1999 A
5960762 Imai Oct 1999 A
5967250 Lund et al. Oct 1999 A
5968596 Ma et al. Oct 1999 A
5975686 Hauck et al. Nov 1999 A
5976707 Grab Nov 1999 A
5992268 Decker et al. Nov 1999 A
5993938 Tsukuda et al. Nov 1999 A
6006415 Schaefer et al. Dec 1999 A
6015597 David Jan 2000 A
6016000 Moslehi Jan 2000 A
6023979 Bills et al. Feb 2000 A
6028393 Izu et al. Feb 2000 A
6051298 Ko et al. Apr 2000 A
6056443 Koike et al. May 2000 A
6059460 Ono et al. May 2000 A
6059830 Lippincott, III et al. May 2000 A
6071597 Yang et al. Jun 2000 A
6083313 Venkatraman et al. Jul 2000 A
6083570 Lemelson et al. Jul 2000 A
6095690 Niegel et al. Aug 2000 A
6099541 Klopotek Aug 2000 A
6099976 Lemelson et al. Aug 2000 A
6106919 Lee et al. Aug 2000 A
6124198 Moslehi Sep 2000 A
6139964 Sathrum et al. Oct 2000 A
6142481 Iwashita et al. Nov 2000 A
6145608 Lund et al. Nov 2000 A
6145763 Fleming et al. Nov 2000 A
6156439 Coffinberry Dec 2000 A
6159558 Wolfe et al. Dec 2000 A
6160683 Boutaghou Dec 2000 A
6165616 Lemelson et al. Dec 2000 A
6170156 Lev et al. Jan 2001 B1
6171343 Dearnaley et al. Jan 2001 B1
6173913 Shafer et al. Jan 2001 B1
6190514 Ma et al. Feb 2001 B1
6193906 Kaneko et al. Feb 2001 B1
6197120 David Mar 2001 B1
6197428 Rogers Mar 2001 B1
6203651 Järvenkylä et al. Mar 2001 B1
6205291 Hughes et al. Mar 2001 B1
6207625 Ogano et al. Mar 2001 B1
6213075 Ajayi et al. Apr 2001 B1
6227056 Bills et al. May 2001 B1
6237441 Nishioka et al. May 2001 B1
6237852 Svetal et al. May 2001 B1
6238839 Tomita et al. May 2001 B1
6255262 Keenan et al. Jul 2001 B1
6261424 Goncharenko et al. Jul 2001 B1
6273793 Liners et al. Aug 2001 B1
6274220 Tsukuda et al. Aug 2001 B1
6289593 Decker et al. Sep 2001 B1
6293648 Anderson Sep 2001 B1
6296552 Boutaghou et al. Oct 2001 B1
6299425 Hirano et al. Oct 2001 B1
6305416 Snel et al. Oct 2001 B1
6309283 Liners et al. Oct 2001 B1
6311524 Brennan, III et al. Nov 2001 B1
6316734 Yang Nov 2001 B1
6322431 Schaenzer et al. Nov 2001 B1
6322719 Kaneko et al. Nov 2001 B2
6324060 Hsu Nov 2001 B1
6325385 Iwashita et al. Dec 2001 B1
6329328 Koganei et al. Dec 2001 B1
6333298 Waddoups et al. Dec 2001 B1
6338881 Sellschopp et al. Jan 2002 B1
6340245 Horton et al. Jan 2002 B1
6358123 Liners et al. Mar 2002 B1
6367439 Nishioka et al. Apr 2002 B1
6367705 Lee et al. Apr 2002 B1
6368676 Gaudreau et al. Apr 2002 B1
6377422 Boutaghou et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6385987 Schlom et al. May 2002 B2
6386468 Neuberger et al. May 2002 B1
6399215 Zhu et al. Jun 2002 B1
6401058 Akalin et al. Jun 2002 B1
6439845 Veres Aug 2002 B1
6439986 Myoung et al. Aug 2002 B1
6452752 Boutaghou Sep 2002 B1
6468642 Bray et al. Oct 2002 B1
6471979 New et al. Oct 2002 B2
6482476 Liu Nov 2002 B1
6494881 Bales et al. Dec 2002 B1
6514298 Haji et al. Feb 2003 B2
6523456 Kobayashi et al. Feb 2003 B1
6524212 Ushijima et al. Feb 2003 B2
6534141 Hull, Jr. et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6537429 O'Donnell et al. Mar 2003 B2
6543394 Tinney Apr 2003 B2
6544308 Griffin et al. Apr 2003 B2
6553957 Ishikawa et al. Apr 2003 B1
6557968 Lee et al. May 2003 B2
6562445 Iwamura May 2003 B2
6562462 Griffin et al. May 2003 B2
6570172 Kim et al. May 2003 B2
6572651 DeScheerder et al. Jun 2003 B1
6572935 He et al. Jun 2003 B1
6572937 Hakovirta et al. Jun 2003 B2
6585064 Griffin et al. Jul 2003 B2
6586069 Dykes et al. Jul 2003 B2
6589640 Griffin et al. Jul 2003 B2
6592519 Martinez Jul 2003 B1
6592985 Griffin et al. Jul 2003 B2
6601662 Matthias et al. Aug 2003 B2
6626949 Townley Sep 2003 B1
6629906 Chiba et al. Oct 2003 B1
6637528 Nishiyama et al. Oct 2003 B2
6638569 McLaughlin et al. Oct 2003 B2
6645354 Gorokhovsky Nov 2003 B1
6656329 Ma et al. Dec 2003 B1
6658941 Bills et al. Dec 2003 B1
6666328 Sykora Dec 2003 B2
6666671 Olver et al. Dec 2003 B1
6679231 Kabat et al. Jan 2004 B2
6684513 Clipstone et al. Feb 2004 B1
6684759 Gorokhovsky Feb 2004 B1
6695865 Boyle et al. Feb 2004 B2
6699106 Myoung et al. Mar 2004 B2
6701627 Korb et al. Mar 2004 B2
6715693 Dam et al. Apr 2004 B1
6726993 Teer et al. Apr 2004 B2
6729350 Schick May 2004 B2
6729527 Sonnenreich et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6739214 Griffin et al. May 2004 B2
6739238 Ushijima et al. May 2004 B2
6740393 Massler et al. May 2004 B1
6745742 Meyer Jun 2004 B2
6749033 Griffin et al. Jun 2004 B2
6752332 Terakado et al. Jun 2004 B1
6753042 Bakounine et al. Jun 2004 B1
6753635 Kuhlmann-Wilsdorf Jun 2004 B2
6761532 Capone et al. Jul 2004 B2
6761736 Woo et al. Jul 2004 B1
6780177 Shafirstein et al. Aug 2004 B2
6797326 Griffin et al. Sep 2004 B2
6799468 Borenstein Oct 2004 B2
6806242 Shirahama et al. Oct 2004 B2
6818029 Myoung et al. Nov 2004 B2
6820676 Palmaz et al. Nov 2004 B2
6821189 Coad et al. Nov 2004 B1
6821624 Utsumi et al. Nov 2004 B2
6822788 Blitstein Nov 2004 B2
6844068 Miyake et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6855237 Kolpakov et al. Feb 2005 B2
6855791 Van Doren et al. Feb 2005 B2
6860255 Yamaguchi et al. Mar 2005 B2
6861098 Griffin et al. Mar 2005 B2
6861137 Griffin et al. Mar 2005 B2
6865952 Bills et al. Mar 2005 B2
6866894 Trankiem et al. Mar 2005 B2
6871700 Gorokhovsky Mar 2005 B2
6872203 Shafirstein et al. Mar 2005 B2
6878447 Griffin et al. Apr 2005 B2
6880469 Frost Apr 2005 B2
6882094 Dimitrijevic et al. Apr 2005 B2
6883476 Nohara et al. Apr 2005 B1
6886521 Hamada et al. May 2005 B2
6887585 Herbst-Dederichs May 2005 B2
6890700 Tomita et al. May 2005 B2
6893720 Nakahigashi et al. May 2005 B1
6969198 Konishi et al. Nov 2005 B2
20010036800 Liners et al. Nov 2001 A1
20020026899 McLaughlin et al. Mar 2002 A1
20020031987 Liners et al. Mar 2002 A1
20020034631 Griffin et al. Mar 2002 A1
20020034632 Griffin et al. Mar 2002 A1
20020051286 Blitstein May 2002 A1
20020070357 Kim et al. Jun 2002 A1
20020074168 Matthias et al. Jun 2002 A1
20020089571 Lee et al. Jul 2002 A1
20020090155 Ushijima et al. Jul 2002 A1
20020090578 Schaefera et al. Jul 2002 A1
20020130219 Parseghian et al. Sep 2002 A1
20020148430 Kano et al. Oct 2002 A1
20020155015 Esumi et al. Oct 2002 A1
20020175476 Chinou et al. Nov 2002 A1
20030012234 Watson et al. Jan 2003 A1
20030019111 Korb et al. Jan 2003 A1
20030019332 Korb et al. Jan 2003 A1
20030021995 Griffin et al. Jan 2003 A1
20030034182 Griffin et al. Feb 2003 A1
20030035957 Griffin et al. Feb 2003 A1
20030035958 Griffin et al. Feb 2003 A1
20030036341 Myoung et al. Feb 2003 A1
20030037640 Griffin et al. Feb 2003 A1
20030069632 De Scheerder et al. Apr 2003 A1
20030084882 Kabat et al. May 2003 A1
20030089343 Yamaguchi et al. May 2003 A1
20030108777 Gunsel et al. Jun 2003 A1
20030114094 Myoung et al. Jun 2003 A1
20030128903 Yasuda et al. Jul 2003 A1
20030159919 Fairbairn et al. Aug 2003 A1
20030162672 Shirahama et al. Aug 2003 A1
20030168323 Frost Sep 2003 A1
20030180565 Herbst-Dederichs Sep 2003 A1
20030199741 Martinez Oct 2003 A1
20030234371 Ziegler Dec 2003 A1
20030235691 Griffin et al. Dec 2003 A1
20040003638 Schaefer et al. Jan 2004 A1
20040008406 Blitstein Jan 2004 A1
20040010068 Doren et al. Jan 2004 A1
20040011900 Gebhardt et al. Jan 2004 A1
20040027018 LeBlanc et al. Feb 2004 A1
20040035375 Gibisch et al. Feb 2004 A1
20040045636 Poirier et al. Mar 2004 A1
20040074467 Hamada et al. Apr 2004 A1
20040092405 Konishi et al. May 2004 A1
20040105806 Griffin et al. Jun 2004 A1
20040109621 Frost Jun 2004 A1
20040115435 Griffin et al. Jun 2004 A1
20040129313 Aharonov et al. Jul 2004 A1
20040133301 Van Doren et al. Jul 2004 A1
20040154570 Mabuchi et al. Aug 2004 A1
20040168326 Korb et al. Sep 2004 A1
20040184687 Morales et al. Sep 2004 A1
20040223256 Feng et al. Nov 2004 A1
20040241448 Kano et al. Dec 2004 A1
20040242435 Nishimura et al. Dec 2004 A1
20040244539 Korb et al. Dec 2004 A1
20040261614 Hamada et al. Dec 2004 A1
20050001201 Bocko et al. Jan 2005 A1
20050005892 Nishimura et al. Jan 2005 A1
20050025975 Okamoto et al. Feb 2005 A1
20050037879 Murata et al. Feb 2005 A1
20050056241 Nomura et al. Mar 2005 A1
20050061291 Nishimura et al. Mar 2005 A1
20050061636 Frost et al. Mar 2005 A1
20050064196 Martin et al. Mar 2005 A1
20050082139 Ishikawa et al. Apr 2005 A1
20050084390 Ueno et al. Apr 2005 A1
20050089685 Hamada et al. Apr 2005 A1
20050098134 Nishimura et al. May 2005 A1
20050100701 Hamada et al. May 2005 A1
20050115744 Griffin et al. Jun 2005 A1
20050188942 Hamada et al. Sep 2005 A1
Foreign Referenced Citations (302)
Number Date Country
2009582 Aug 1990 CA
1128286 Aug 1996 CN
643 034 Mar 1937 DE
19507086 Sep 1996 DE
19507086 Sep 1996 DE
197 04 224 Aug 1997 DE
198 15 989 Oct 1999 DE
198 25 860 Dec 1999 DE
19825860 Dec 1999 DE
100 17 459 Oct 2000 DE
100 61 397 May 2002 DE
101 58 683 Jun 2003 DE
103 18 135 Nov 2003 DE
10337559 Mar 2005 DE
0 286 996 Oct 1988 EP
0 291 006 Nov 1988 EP
0 299 785 Jan 1989 EP
0308143 Mar 1989 EP
0 333 416 Sep 1989 EP
0378378 Jul 1990 EP
0384772 Aug 1990 EP
0388800 Sep 1990 EP
0392125 Oct 1990 EP
0398985 Nov 1990 EP
407977 Jan 1991 EP
0 435 312 Jul 1991 EP
0474369 Mar 1992 EP
0 500 253 Aug 1992 EP
0511153 Oct 1992 EP
0 529 327 Mar 1993 EP
0392125 Mar 1993 EP
0546824 Jun 1993 EP
0308143 Nov 1993 EP
0573943 Dec 1993 EP
0619504 Oct 1994 EP
0621136 Oct 1994 EP
0624353 Nov 1994 EP
0624354 Nov 1994 EP
0378378 Jan 1995 EP
0651069 May 1995 EP
0652301 May 1995 EP
0656458 Jun 1995 EP
0 661 470 Jul 1995 EP
0396603 Jun 1996 EP
0388800 Dec 1996 EP
0 759 519 Feb 1997 EP
0474369 Mar 1997 EP
0 818 622 Jan 1998 EP
0652301 Jan 1998 EP
0826790 Mar 1998 EP
0842754 May 1998 EP
0 870 820 Oct 1998 EP
0816112 Oct 1998 EP
0882759 Dec 1998 EP
0893677 Jan 1999 EP
0624353 Feb 1999 EP
0656458 Feb 1999 EP
0 905 221 Mar 1999 EP
0 905 419 Mar 1999 EP
0647318 Mar 1999 EP
0651069 Mar 1999 EP
0 731 190 May 1999 EP
0949200 Oct 1999 EP
0845154 Nov 1999 EP
0624354 Dec 1999 EP
0582676 Mar 2000 EP
0990532 Apr 2000 EP
1063085 Dec 2000 EP
1 067 211 Jan 2001 EP
0850126 Jan 2001 EP
1076087 Feb 2001 EP
1078736 Feb 2001 EP
1109196 Jun 2001 EP
0778902 Sep 2001 EP
1 154 012 Nov 2001 EP
0826790 Nov 2001 EP
1034320 Dec 2001 EP
0850133 Jan 2002 EP
0893677 Jan 2002 EP
1184480 Mar 2002 EP
1190791 Apr 2002 EP
1219464 Jul 2002 EP
1 233 054 Aug 2002 EP
0971812 Oct 2002 EP
1018291 Oct 2002 EP
1281513 Feb 2003 EP
1 300 608 Apr 2003 EP
0950123 May 2003 EP
0882759 Jun 2003 EP
1 338 641 Aug 2003 EP
1340605 Sep 2003 EP
1365141 Nov 2003 EP
1083946 Dec 2003 EP
1078736 Jan 2004 EP
1378271 Jan 2004 EP
0757615 Mar 2004 EP
0842754 Mar 2004 EP
1 411 145 Apr 2004 EP
0862395 Apr 2004 EP
1 418 353 May 2004 EP
1440775 Jul 2004 EP
1445119 Aug 2004 EP
1475557 Nov 2004 EP
1481699 Dec 2004 EP
1482190 Dec 2004 EP
1498597 Jan 2005 EP
1 510 594 Mar 2005 EP
1311885 Mar 2005 EP
1512781 Mar 2005 EP
1183470 Apr 2005 EP
2 669 689 May 1992 FR
768226 Feb 1957 GB
1005638 Oct 1988 GB
2338716 Dec 1999 GB
62-111106 May 1987 JP
63-21209 Jan 1988 JP
63-288994 Nov 1988 JP
5-70879 Mar 1993 JP
5-36004 May 1993 JP
5-42616 Jun 1993 JP
6-264993 Sep 1994 JP
6-294307 Oct 1994 JP
7-63135 Mar 1995 JP
7-90553 Apr 1995 JP
7-103238 Apr 1995 JP
07-118832 May 1995 JP
7-41386 Oct 1995 JP
7-286696 Oct 1995 JP
8-14014 Jan 1996 JP
8-61499 Mar 1996 JP
9-20981 Jan 1997 JP
52006318 Jan 1997 JP
253770 Sep 1997 JP
10-088369 Apr 1998 JP
10-265790 Oct 1998 JP
10-298440 Nov 1998 JP
11-22423 Jan 1999 JP
11-190406 Jul 1999 JP
11-292629 Oct 1999 JP
11-294118 Oct 1999 JP
11-333773 Dec 1999 JP
2000-88104 Mar 2000 JP
2000-119843 Apr 2000 JP
2000-504089 Apr 2000 JP
2000-128516 May 2000 JP
2000-297373 Oct 2000 JP
2000-327484 Nov 2000 JP
2000-339083 Dec 2000 JP
2001-62605 Mar 2001 JP
2001-64005 Mar 2001 JP
2001-93141 Apr 2001 JP
2001-172766 Jun 2001 JP
2001-192864 Jul 2001 JP
2001-269938 Oct 2001 JP
2001-280236 Oct 2001 JP
2002-265968 Sep 2002 JP
2002-309912 Oct 2002 JP
2002-332571 Nov 2002 JP
2003-13163 Jan 2003 JP
2003-13799 Jan 2003 JP
2003-25117 Jan 2003 JP
2003-28174 Jan 2003 JP
2003-88939 Mar 2003 JP
2003-113941 Apr 2003 JP
2003-147508 May 2003 JP
2004-36788 Feb 2004 JP
2005-68529 Mar 2005 JP
2004586 Dec 1993 RU
2153782 Jul 2000 RU
1770350 Oct 1992 SU
WO 8906707 Jul 1989 WO
WO 8906708 Jul 1989 WO
WO 8906338 Jul 1989 WO
WO 9202602 Feb 1992 WO
WO 9206843 Apr 1992 WO
WO 9219425 Nov 1992 WO
WO 9321288 Oct 1993 WO
WO 9321289 Oct 1993 WO
WO 9324828 Dec 1993 WO
WO 9520253 Jul 1995 WO
WO 9529044 Nov 1995 WO
WO 9529273 Nov 1995 WO
WO 9531584 Nov 1995 WO
WO 9604485 Feb 1996 WO
WO 9605333 Feb 1996 WO
WO 9605942 Feb 1996 WO
WO 9606961 Mar 1996 WO
WO 9612389 Apr 1996 WO
WO 9624488 Aug 1996 WO
WO 9640446 Dec 1996 WO
WO 9707531 Feb 1997 WO
WO 9710093 Mar 1997 WO
WO 9710940 Mar 1997 WO
WO 9714555 Apr 1997 WO
WO 9716138 May 1997 WO
WO 9802715 Jan 1998 WO
WO 9812994 Apr 1998 WO
WO 9813528 Apr 1998 WO
WO 9847141 Oct 1998 WO
WO 9909547 Feb 1999 WO
WO 9912404 Mar 1999 WO
WO 9914512 Mar 1999 WO
WO 9916371 Apr 1999 WO
WO 9922694 May 1999 WO
WO 9927157 Jun 1999 WO
WO 9929477 Jun 1999 WO
WO 9931557 Jun 1999 WO
WO 9934385 Jul 1999 WO
WO 9946847 Sep 1999 WO
WO 9954520 Oct 1999 WO
WO 9954934 Oct 1999 WO
WO 9957743 Nov 1999 WO
WO 9962077 Dec 1999 WO
WO 9962572 Dec 1999 WO
WO 0022613 Apr 2000 WO
WO 0024554 May 2000 WO
WO 0025410 May 2000 WO
WO 0028142 May 2000 WO
WO 0033051 Jun 2000 WO
WO 0035000 Jun 2000 WO
WO 0044032 Jul 2000 WO
WO 0047402 Aug 2000 WO
WO 0055385 Sep 2000 WO
WO 0056127 Sep 2000 WO
WO 0056393 Sep 2000 WO
WO 0062327 Oct 2000 WO
WO 0068451 Nov 2000 WO
WO 0075517 Dec 2000 WO
WO 0078504 Dec 2000 WO
WO 0105917 Jan 2001 WO
WO 0106033 Feb 2001 WO
WO 0114736 Mar 2001 WO
WO 0114745 Mar 2001 WO
WO 0126862 Apr 2001 WO
WO 0137631 May 2001 WO
WO 0140537 Jun 2001 WO
WO 0147451 Jul 2001 WO
WO 0159544 Aug 2001 WO
WO 0161182 Aug 2001 WO
WO 0161719 Aug 2001 WO
WO 0162372 Aug 2001 WO
WO 0163639 Aug 2001 WO
WO 0167834 Sep 2001 WO
WO 0179583 Oct 2001 WO
WO 0180224 Oct 2001 WO
WO 0206875 Jan 2002 WO
WO 0213188 Feb 2002 WO
WO 0224601 Mar 2002 WO
WO 0224603 Mar 2002 WO
WO 0224970 Mar 2002 WO
WO 0232625 Apr 2002 WO
WO 0244440 Jun 2002 WO
WO 02054454 Jul 2002 WO
WO 02062714 Aug 2002 WO
WO 02073021 Sep 2002 WO
WO 02080996 Oct 2002 WO
WO 02085237 Oct 2002 WO
WO 02090461 Nov 2002 WO
WO 02097289 Dec 2002 WO
WO 03009978 Feb 2003 WO
WO 03013990 Feb 2003 WO
WO 03020329 Mar 2003 WO
WO 03021731 Mar 2003 WO
WO 03031543 Apr 2003 WO
WO 03046508 Jun 2003 WO
WO 03054876 Jul 2003 WO
WO 03076309 Sep 2003 WO
WO 03078679 Sep 2003 WO
WO 03091758 Nov 2003 WO
WO 03095009 Nov 2003 WO
WO 03105134 Dec 2003 WO
WO 2004001804 Dec 2003 WO
WO 2004004998 Jan 2004 WO
WO 2004019809 Mar 2004 WO
WO 2004024206 Mar 2004 WO
WO 2004026359 Apr 2004 WO
WO 2004026500 Apr 2004 WO
WO 2004036169 Apr 2004 WO
WO 2004036292 Apr 2004 WO
WO 2004038701 May 2004 WO
WO 2004043631 May 2004 WO
WO 2004048126 Jun 2004 WO
WO 2004067466 Aug 2004 WO
WO 2004068530 Aug 2004 WO
WO 2004071670 Aug 2004 WO
WO 2004072959 Aug 2004 WO
WO 2004078424 Sep 2004 WO
WO 2004084773 Oct 2004 WO
WO 2004088113 Oct 2004 WO
WO 2005010596 Feb 2005 WO
WO 2005011744 Feb 2005 WO
WO 2005014760 Feb 2005 WO
WO 2005014882 Feb 2005 WO
WO 2005016620 Feb 2005 WO
WO 2005021851 Mar 2005 WO
WO 2005025844 Mar 2005 WO
WO 2005034791 Apr 2005 WO
WO 2005037144 Apr 2005 WO
WO 2005037985 Apr 2005 WO
WO 2005040451 May 2005 WO
WO 2005042064 May 2005 WO
WO 2005047737 May 2005 WO
Related Publications (1)
Number Date Country
20050035222 A1 Feb 2005 US