This invention relates to improvements in a sliding member which is lubricated with fuel, for an automotive vehicle, and more particularly to the improvements in a fuel injection valve for an automotive vehicle, including a needle valve whose sliding section (in slidable contact with an opposite member) is coated with a particular hard carbon thin film so as to be high in durability reliability and realize a low friction coefficient.
Recently, requirements for improving fuel economy and exhaust gas emission control to automotive vehicles have become further stringent, and therefore sliding conditions at sliding sections which are lubricated with fuels become further severe in order to suppress friction at such sliding sections. It has been proposed as a measure to suppress the friction at the sliding sections, that a hard thin film of chromium nitride, titanium nitride or the like is formed at the sliding section of the fuel injection valve as disclosed in Japanese Patent Provisional Publication No. 7-63135, the entire disclosure of which is hereby incorporated by reference.
The largest merits of forming such a hard thin film resides in a point where a remarkably high surface hardness is obtained as compared with a surface treatment such as plating and a surface-hardening treatment such as a heat treatment. By applying such a hard thin film onto the sliding section, it is expected that a wear resistance can be greatly improved. Additionally, under lubrication, such a hard thin film can suppress the degradation of the surface roughness due to wear, and therefore it prevents an opposite member from wearing due to the degraded surface roughness and prevents a frictional force from increasing due to an increase in direct contact (metal contact) with the opposite member, thereby making it possible to maintain a lubricating condition at an initial state for a long time. Furthermore, since the hard thin film itself is hard, it can be possible to make the opposite member adaptable to the hard thin film, and accordingly it can be expected to provide a function to obtain a smoothened surface roughness. As a result, it can be expected that the surface roughness of the both the hard thin film and the opposite member are improved in the lubricating condition.
Now, it has been known that an amorphous carbon film such as a diamond-like carbon (DLC) film which is a kind of hard thin films is high in hardness itself and has a characteristic serving as a solid lubricant itself, so that it exhibits a remarkably low friction coefficient under no lubrication.
As microscopically viewed in lubricating oil, the sliding section is divided into a section where the hard thin film slidably contacts with the opposite member through an oil film, and another section where projections due to the surface roughness (shape) of both the hard thin film and the opposite member directly contact with the facing member making a metal contact. At the latter section where the metal contact is made, an effect of lowering the frictional force generated there can be expected similarly in case of no lubrication, by applying a DLC film at the section. In this regard, it has been investigated to apply the DLC film as a technique for lowering friction in an internal combustion engine.
However, a hard thin film formed by a PVD process or a CVD process is high in internal stress as compared with a surface treatment such as plating and remarkably high in hardness. Accordingly, if the hard thin film is applied to the sliding section of machine parts, the hard thin film tends to peel off from a base material or to form its crack. Concerning such peeling-off of the hard thin film, it has been proposed to soften the internal stress so as to make an improvement by providing a suitable intermediate layer taking account of adhesiveness between the hard thin film and the base material or by applying a multiple layer structure of the hard thin film.
In connection with formation of cracks in the hard thin film itself and peeling-off of the hard thin film due to the cracks, there have hardly been conventional techniques which improve the hard thin film to prevent them by regulating the surface roughness and shape of the hard thin film (particularly, a hard carbon thin film) and them of the opposite member. Only measures which have been hitherto proposed are to form a hard carbon thin film consisting of C, H, Si and inevitable impurities is formed at the surface of the sliding section, regulating the thickness and hardness of the hard carbon thin film as disclosed in Japanese Patent Provisional Publication No. 2002-332571.
However, as discussed above, although some studies have been made on sliding of the hard carbon thin film consisting of C, H, Si and inevitable impurities, it has not been found to study sliding upon making total judgments on the components, thickness, hardness and surface roughness of the hard carbon thin film, and fuels to be used for fuel injection valves. Particularly, the above hard carbon thin film strongly tends to be brittle as compared with a film of titanium nitride (TiN) or chromium nitrate (CrN), and therefore not only a film formation control in accordance with the property of the film is required but also influences by additives or the like contained in fuel to be used for the fuel injection valve cannot be disregarded. Thus, in the present status, the relationship among the above various matters has not still become apparent.
It is an object of the present invention is to provide an improved fuel injection valve which can effectively overcome drawbacks encountered in conventional fuel injection valves.
Another object of the present invention is to provide an improved fuel injection valve which can ensure its durability reliability, realize a low friction coefficient and is improved in a seizure resistance while being improved in its response characteristics under the realized low friction coefficient.
A further object of the present invention is to provide an improved fuel injection valve whose sliding section is coated with a hard carbon thin film, in which the hard carbon thin film can be effectively prevented from forming crack, peeling-off and the like which occur when the hard carbon thin film which is generally seemed to be low in ductility is applied to the sliding section because it is extremely high in hardness as compared with a film formed by a surface treatment such as plating or the like.
According to the present invention, a fuel injection valve comprises a needle valve including a base material. An opposite member is provided including a base material whose sliding section is in slidable contact with a sliding section of the base material of the needle valve in presence of fuel for an automotive vehicle. Additionally, a hard carbon thin film is coated on at least one of the sliding sections of the base materials of the needle valve and the opposite member. The hard carbon thin film has a surface hardness ranging from 1500 to 4500 kg/mm2 in Knoop hardness, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (Ry) (μm) which satisfies a relationship represented by the following formula (A):
Ry<(0.75−Hk/8000)×h+0.0875 (A)
where h is the thickness (μm) of the hard carbon thin film; Hk is the surface hardness in Knoop hardness (kg/mm2) of the hard carbon thin film.
The single FIGURE is an enlarged fragmentary sectional view of a fuel injection valve according to the present invention.
Referring now to the single FIGURE, a fuel injection valve 10 according to the present invention comprises a needle valve 12 which is a sliding member used in presence of fuel 14 for an automotive vehicle. The needle valve 12 includes a base material or main body section 12a made of iron-based material or steel, or aluminum-based material. The base material 12a of the needle valve 12 has a sliding section or surface 12b which is in slidable contact with a sliding section or surface 16b of a base material 16a of an opposite member 16.
In such a fuel injection valve, the opposite member 16 is a guide (for the needle valve) or a housing constituting the fuel injection valve, so that a hard carbon thin film 18 is formed on the sliding surface 12a of the base material 12a so as to be slidably coatactable with the opposite member. It will be understood that the base material or main body section 16a of the opposite member may be coated at its sliding surface 16a with the hard carbon thin film in place of the base material of the needle valve, which will provide the same effects as those in case of the needle valve being coated with the hard carbon thin film. Otherwise, the hard carbon thin film 18 may be formed both on the sliding surfaces 12b, 16a of the base materials 12a,16a of the needle valve 12 and the opposite member 16
The base material made of the iron-based material or the like preferably has a surface roughness (center line average roughness) Ra of not larger than 0.03 μm though the surface roughness may be affected by kinds and properties of the sliding member and the automotive fuel, in a state where it has not still been coated with the hard carbon thin film of a certain material. If the surface roughness exceeds 0.03 μm, projecting portions due to the surface roughness of the hard carbon thin film causes a local Hertz's contact pressure to the opposite member to increase, thereby resulting in induction of formation of crack in the hard carbon thin film. The mechanism of this phenomena will be discussed in detail after.
The needle valve of the fuel injection valve according to the present invention is operated in presence of fuel which serves also as a lubricating oil. The fuel contains at least one of ester-based additive and amine-based additive, more specifically, at least one of octane booster, cetane booster, antioxidant, metal deactivator, detergent-dispersant, deicing agent and corrosion inhibitor. It is to be noted that lowering in friction coefficient and improvement in wear resistance can be effectively achieved in the needle valve or the opposite member in presence of such additive(s).
Examples of such additives are fatty acid ester and fatty acid amine compound which have a straight or branched hydrocarbon chain (or group) having a carbon number ranging from 6 to 30, preferably a carbon number ranging from 8 to 24. The additives can be used singly or in suitable combination (or as a mixture). If the carbon number is not within the range of from 6 to 30, the friction coefficient lowering effect cannot be sufficiently obtained. Examples of fatty acid ester are esters which are formed from fatty acid having the straight or branched hydrocarbon chain having the carbon number ranging from 6 to 30 and aliphatic monohydric alcohol or aliphatic polyhydric alcohol. Specific examples of the fatty acid ester compound are glycerol monooleate, glycerol dioleate, sorbitan monooleate, sorbitan dioleate, and the like. Examples of fatty acid amine compound are aliphatic monoamine or alkylene oxide adducts thereof, aliphatic polyamines, imidazoline compound and the like, and derivatives thereof. Specific examples of the fatty acid amine compound are laurylamine, lauryldiethylamine, stearylamine, oleylpropylenediamine, and the like.
Next, the hard carbon thin film coated on the sliding section of the sliding member will be discussed in detail.
The hard carbon thin film used for the fuel injection valve is mainly formed of carbon and is typically a film formed of only carbon except for inevitable impurities. The hard carbon thin film is preferably a DLC (diamond-like carbon) thin film which is formed by a variety of PVD processes, more specifically by an arc ion plating process.
The hard carbon thin film has a surface hardness (Knoop hardness) ranging from 1500 to 4500 kg/mm2, a film thickness ranging from 0.3 to 2.0 μm, and a surface roughness (the maximum height: μm) Ry represented by the following formula (A):
Ry<(0.75−Hk/8000)×h+0.0875 (A)
where h is the thickness (μm) of the hard carbon thin film; Hk is the Knoop hardness (kg/mm2) of the hard carbon thin film.
The above formula (A) has been established on the basis of results of analysis made on the experiments in which hard carbon thin films by PVD processes such as the arc ion plating process are formed or coated at the sliding sections of a variety of sliding members, and then the hard carbon thin films were slidingly moved to opposite members. Particularly, the above formula (A) is determined particularly by taking account of relationships among the hardness, surface roughness and thickness of the hard carbon thin films, the shape of the base materials, and the surface roughness and shape of the opposite members particularly in connection with the facts that flaws are formed at the hard carbon thin films and peeling-off of the hard carbon film occurred owing to the flaws during sliding movement of the hard carbon thin film.
Specifically, in all cases that the flaws are formed at the hard carbon thin films upon the sliding movements of the hard carbon thin films, the hard carbon thin films make their cracks so as to microscopically peeled off (forming peeled pieces of the hard carbon thin film) thereby forming the flaws, in which the thus produced peeled piece is dragged so that the flaws were developed further into larger flaws. In this regard, the present inventors have found that factors or causes for producing the flaws are loads to the hard carbon thin films in the all cases, upon which further studies have been made by the present inventors, thus deriving the relationship of the above formula (A).
In contrast, in case that consideration is made only on a Hertz's contact pressure supposed from a line contact between a flat sliding member and an opposite member having a simple curvature as in a conventional technique, it is supposed that such crack does not occur if the film thickness of a hard carbon thin film is relatively thick over a certain level, and therefore the relationship of the above formula (A) is disregarded.
Here, one of causes for making the load to the hard carbon thin film excessive is known to be deposit formed in the hard carbon thin film. This deposit formation is a peculiar phenomena made in a film formed by PVD process such as the arc ion plating process. During formation of the hard carbon thin film, particles coming flying from a target as a raw material of the hard carbon thin film are not in a state of single ion or atom and therefore are in a state of cluster or in a molten state. Thus, the particles in the cluster state or the molten state come flying to the surface of the base material, in which the particles remain as they are in the hard carbon thin film. Additionally, the hard carbon thin film grows around the particles in such a manner as to be piled up, so that the particles are distributed as hard granular projections in the hard carbon thin film.
Such deposits or granular projections tend to readily fall off during sliding movement of the hard carbon thin film. Accordingly, when the deposits or granular projections are caught up in a contacting section between the hard carbon thin film and the opposite member, a pressing force from the opposite member is transmitted through the deposits or granular projections to the hard carbon thin film, in which a local pressure at this site is much higher than a Hertz's contact pressure which is calculated based on macro curvature of the opposite member taking account of elastic deformation, and therefore the local pressure can become a cause for inducing formation of crack in the hard carbon thin film. Further, a shearing force due to sliding contact of the hard carbon thin film to the opposite member is added to the above local pressure, so that flaws develop linearly toward the outer periphery of the hard carbon thin film. This will cause a macro peeling of the hard carbon thin film itself.
Another cause for making the load to the hard carbon thin film excessive is the fact that the opposite member is high in surface roughness. This cause is classified into a first case where projections due to this high surface roughness increases a local Hertz's contact pressure and a second case where a line contact between the sliding member and the opposite member becomes a point contact when the flatness of the sliding member and the opposite member is insufficient. Particularly in the second case, crack of the hard carbon thin film may be largely promoted under a combination effect with the above-mentioned deposits,
Besides, in connection with the establishment of the above formula (A), it has become apparent by the analysis that the thickness and hardness of the hard carbon thin film may become factors or causes for formation of crack. More specifically, concerning the thickness, as the thickness of the hard carbon thin film increases, the deformation amount of the hard carbon thin film decreases in case that a particle is pressed at a certain load against the hard carbon thin film, thereby increasing a resistance against the formation of crack relative to the load applied to the hard carbon thin film. As a result, in order to realize a good lubricating condition, a certain film thickness of the hard carbon thin film is required in accordance with the load of sliding conditions of the sliding member. Concerning the harness, in general, a hardness and a ductility of a film are in a contradictory relationship, so that it is known that the ductility lowers as the hardness of the film increases. More specifically, the fact that the hardness of the film is low to a certain degree increases a resistance of the film against formation of crack. It will be understood that this has been also taken into consideration in order to establish the above formula (A).
Hereafter, restriction conditions for the above formula (A) will be discussed in detail.
First, a restriction condition that the film thickness of the hard carbon thin film is not smaller than 0.3 μm is set because crack is unavoidably formed if the film thickness is smaller than 0.3 μm upon taking account of the input force from the corresponding opposite member. Another restricted condition that the film thickness is not larger than 2.0 μm is set because a large residual stress is generated at the step of formation of the hard carbon thin film if the film thickness exceeds 2.0 μm, which leads to a problem of the base material itself warping. Warping of the hard carbon thin film serves to promote the point contact of the hard carbon thin film to the opposite member, and therefore the film thickness exceeding 2.0 μm becomes a factor or cause for indirectly promoting formation of crack of the hard carbon thin film upon an insufficient contact between the sliding member and the opposite member.
The surface roughness of the hard carbon thin film is derived from the relationship between the hardness and thickness of the hard carbon thin film, as set forth below.
An indentation depth h′ (provided by particle of the deposit or by projections due to the roughness of the sliding surface) allowable for the hard carbon thin film having the Knoop hardness Hk is experimentally represented by the following equation (1):
h′/h=0.6−Hk/10000 (1)
where h is the thickness of the hard carbon thin film.
Concerning the surface roughness Ry of the hard carbon thin film, it has been found that a relationship represented by the following equation (2) is established as a result of study on a variety of films:
a=0.8Ry−0.07 (2)
where a is the height of the deposit remaining in the film.
In case that flaw, crack due to the flaw, or peeling of the film is caused by the deposit present in the hard carbon thin film, it can be prevented from occurrence by controlling the surface roughness of the hard carbon thin film, and therefore it is sufficient that a<h′ is satisfied under the fact that the deposit serves as the indentation depth as it is.
Thus, from the above relationship, the above formula (A: Ry<(0.75−Hk/8000)×h+0.0875) is derived.
Additionally, it is preferable that the amount of hydrogen contained as an impurity in the hard carbon thin film is not more than 0.5 atomic %. More specifically, hydrogen is an element which is unavoidably contained or mixed in the hard carbon thin film for the reason why CH (hydrocarbons) based gas is used as a carbon supply source when the hard carbon thin film is formed, for example, by the CVD process. If the content of hydrogen exceeds 0.5 atomic %, the hardness of the hard carbon thin film is lowered thereby degrading the surface roughness of the hard carbon thin film, thus providing a tendency of occurring deterioration of friction.
Next, an appropriate range of the base material to be coated with the hard carbon thin film will be discussed.
Steel such as stainless steel or aluminum-based alloy for weight-lightening is used as the base material to be coated with the hard carbon thin film. The surface roughness of the base material before being coated with the hard carbon thin film influences a surface roughness of the hard carbon thin film after being formed on the base material because the film thickness of the hard carbon thin film is very small. As a result, in case that the surface roughness of the base material is high, projections due to the roughness of the surface of the hard carbon thin film increases a local Hertz's contact pressure, thereby providing a cause for inducing formation of crack in the hard carbon thin film.
The above-mentioned surface roughness Ra (center line average roughness) represents a value which is obtained by averaging the total of the absolute values of deviations of measured lines from the average line of a roughness curve. The maximum height Ry (Rmax) represents the sum of the height of the highest peak and the depth of the deepest trough. The surface roughness Ra and the maximum height Ry are discussed respectively as Ra75 and Rz in JIS (Japanese Industrial Standard) B 0601 (:2001). In Examples and Comparative Examples discussed hereafter, measurement of the surface roughness was made by using a surface roughness tester under conditions where a measuring length was 48 mm, a measuring speed was 0.5 mm/sec., and a measuring pitch was 0.5 μm.
The present invention will be more readily understood with reference to the following Examples in comparison with Comparative Examples; however, these Examples are intended to illustrate the invention and are not to be construed to limit the scope of the invention.
A column-like test piece as a base material having a diameter of 18 mm and a length of 22 mm was cut out from a raw material of stainless steel. The surface of this test piece was finished to have a surface roughness Ra of 0.03 μm. Thereafter, a DLC thin film (hard film) was formed at the finished surface of the test piece by an arc ion plating process (PVD), thus producing a specimen of this Example. The formed DLC thin film had a Knoop hardness Hk of 2250 kg/mm2, a maximum height Ry of 0.04 μm, and a thickness h of 0.5 μm, and further had a value (of the right side of the formula (A)) of 0.32.
A column-like test piece which was the same as that in Example 1 was used as a base material. This column-like test piece was used as a specimen of this Comparative Example as it is, without the DLC thin film being formed at the finished surface of the test piece.
A column-like test piece which was the same as that in Example 1 was used as a base material. Thereafter, a TiN film was formed at the finished surface of the test piece, thus producing a specimen of this Comparative Example.
A column-like test piece which was the same as that in Example 1 was used as a base material. Thereafter, a Cr2N film was formed at the finished surface of the test piece, thus producing a specimen of this Comparative Example.
A column-like test piece which was the same as that in Example 1 was used as a base material. The surface of this test piece was finished to have a surface roughness Ra of 0.1 μm. Thereafter, a DLC thin film as same as that in Example 1 was formed at the finished surface of the test piece by an arc ion plating process (PVD), thus producing a specimen of this Example.
Each of the specimens of Example and Comparative Examples was subjected to a frictional wear test under test conditions set forth below to measure a friction coefficient and a seizure load at which the specimen occurs its seizure to an opposite member with which the specimen was in sliding contact. Results of this test were tabulated in Table 1.
Test Conditions
(a) The opposite member: a disc member (test piece) formed of chromium molybdenum steel and having a diameter of 24 mm and a thickness of 7 mm;
(b) A test system: SRV Test System (Machine No. 39903163) produced by Optimol Instruments Prüftechnik GmbH, in which the specimen made its reciprocating motion upon sliding contact with the disc member (the opposite member);
(c) A frequency of the reciprocating motion: 50 Hz
(d) A load applying manner: a load applied to the specimen was increased at a rate of 130 N/min.;
(e) A sliding width: 1 mm; and
(f) A test oil: Regular gasoline (in Japan) which was present between the specimen and the disc member.
Needle valves of fuel injection valves for a gasoline-fueled internal combustion engines were produced respectively corresponding to the specimens of the above Example and Comparative Examples. Each needle valve was produced by coating a base material with a hard film as same as that of the Example or Comparative Example except for the needle valve corresponding to Comparative Example 1. Each needle valve was assembled in a fuel injection valve. Then, a delay in a response time of the fuel injection valve was measured thereby evaluating a response characteristics of the fuel injection valve. Results of the evaluation test 2 were tabulated also in Table 1. The results of the response characteristics are shown as relative values to a standard value (1.00) which is a delay in the response time in the needle valve corresponding to Comparative Example 1.
As apparent from the test results in Table 1, Example 1 (and the corresponding needle valve of the fuel injection valve) in which the base material was coated with the DLC thin film as the hard carbon thin film exhibits a low friction coefficient, a high seizure load and a high response characteristics as compared with Comparative Examples 1 to 3 in which the base material was coated with no hard film, or coated with the TiN film or Cr2N film. Additionally, even in case that the base material was coated with the same DLC thin film, the thin film was unavoidably peeled off during the test in the event that the surface roughness of the base material before being coated with the thin film had been rougher than that in Example 1, as seen from Comparative Example 4.
As appreciated from the above, according to the present invention, the hard carbon thin film, particularly DLC thin film, is suitably controlled in its surface roughness or shape in accordance with the surface hardness and the film thickness. Therefore, the hard carbon thin film can be effectively prevented from cracking, peeling-off and the like which tend to occur when the hard carbon thin film is applied to a sliding section of a fuel injection valve of an automotive vehicle. As a result, the fuel injection valve can ensure its durability reliability, realize a low friction coefficient and be improved in a seizure resistance while being improved in its response characteristics under the realized low friction coefficient.
In the fuel injection valve according to the present invention, a force input condition of load allowable by the hard carbon thin film is determined in accordance with the thickness and hardness of the hard carbon thin film, particularly of the DLC thin film. Accordingly, by suitably regulating factors such as the surface roughness, shape and the like of the hard carbon thin film relative to sliding conditions at the given film and the section to which the film is applied, the force input condition is limited within a certain range, so that the film can be previously prevented from occurrence of crack and peeling-off at the section to which the film is applied, while maintaining its function as a film for a long time.
The entire contents of Japanese Patent Application P2003-110398 (filed Apr. 15, 2003) are incorporated herein by reference.
Although the invention has been described above by reference to certain embodiments and examples of the invention, the invention is not limited to the embodiments and examples described above. Modifications and variations of the embodiments and examples described above will occur to those skilled in the art, in light of the above teachings. The scope of the invention is defined with reference to the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-110398 | Apr 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1461 | Day | Dec 1839 | A |
2716972 | Farny et al. | Sep 1955 | A |
2982733 | Wright et al. | May 1961 | A |
3211647 | O'Halloran et al. | Oct 1965 | A |
3790315 | Emanuelsson et al. | Feb 1974 | A |
3846162 | Bloom | Nov 1974 | A |
3932228 | Sugiyama et al. | Jan 1976 | A |
4031023 | Musser et al. | Jun 1977 | A |
4367130 | Lemelson | Jan 1983 | A |
4385880 | Lemelson | May 1983 | A |
4538929 | Ehrentraut et al. | Sep 1985 | A |
4554208 | MacIver et al. | Nov 1985 | A |
4645610 | Born et al. | Feb 1987 | A |
4702808 | Lemelson | Oct 1987 | A |
4712982 | Inagaki et al. | Dec 1987 | A |
4755237 | Lemelson | Jul 1988 | A |
4755426 | Kokai et al. | Jul 1988 | A |
4783368 | Yamamoto et al. | Nov 1988 | A |
4834400 | Lebeck | May 1989 | A |
4842755 | Dunn | Jun 1989 | A |
4859493 | Lemelson | Aug 1989 | A |
4874596 | Lemelson | Oct 1989 | A |
4919974 | McCune et al. | Apr 1990 | A |
4933058 | Bache et al. | Jun 1990 | A |
4943345 | Asmussen et al. | Jul 1990 | A |
4960643 | Lemelson | Oct 1990 | A |
4974498 | Lemelson | Dec 1990 | A |
4980021 | Kitamura et al. | Dec 1990 | A |
4980610 | Varga | Dec 1990 | A |
4981717 | Thaler | Jan 1991 | A |
4988421 | Drawl et al. | Jan 1991 | A |
4992082 | Drawl et al. | Feb 1991 | A |
4992187 | Adams et al. | Feb 1991 | A |
5000541 | DiMarcello et al. | Mar 1991 | A |
5021628 | Lemelson | Jun 1991 | A |
5032243 | Bache et al. | Jul 1991 | A |
5036211 | Scott | Jul 1991 | A |
5040501 | Lemelson | Aug 1991 | A |
5067826 | Lemelson | Nov 1991 | A |
5077990 | Plath | Jan 1992 | A |
5078848 | Anttila et al. | Jan 1992 | A |
5087608 | Chan et al. | Feb 1992 | A |
5096352 | Lemelson | Mar 1992 | A |
5110435 | Haberland | May 1992 | A |
5112025 | Nakayama et al. | May 1992 | A |
5127314 | Swain | Jul 1992 | A |
5131941 | Lemelson | Jul 1992 | A |
5132587 | Lemelson | Jul 1992 | A |
5142785 | Grewal et al. | Sep 1992 | A |
5143634 | Quinga et al. | Sep 1992 | A |
5148780 | Urano et al. | Sep 1992 | A |
5187021 | Vydra et al. | Feb 1993 | A |
5190807 | Kimock et al. | Mar 1993 | A |
5190824 | Itoh | Mar 1993 | A |
5202156 | Yamamoto et al. | Apr 1993 | A |
5205188 | Repenning et al. | Apr 1993 | A |
5205305 | Yamakita | Apr 1993 | A |
H1210 | Jansen | Jul 1993 | H |
5232568 | Parent et al. | Aug 1993 | A |
5237967 | Willermet et al. | Aug 1993 | A |
5249554 | Tamor et al. | Oct 1993 | A |
5255783 | Goodman et al. | Oct 1993 | A |
5255929 | Lemelson | Oct 1993 | A |
5284394 | Lemelson | Feb 1994 | A |
5288556 | Lemelson | Feb 1994 | A |
5295305 | Hahn et al. | Mar 1994 | A |
5299937 | Gow | Apr 1994 | A |
5317938 | de Juan, Jr. et al. | Jun 1994 | A |
5326488 | Minokami et al. | Jul 1994 | A |
5332348 | Lemelson | Jul 1994 | A |
5334306 | Dautremont-Smith et al. | Aug 1994 | A |
5349265 | Lemelson | Sep 1994 | A |
5358402 | Reed et al. | Oct 1994 | A |
5359170 | Chen et al. | Oct 1994 | A |
5360227 | Lemelson | Nov 1994 | A |
5380196 | Kelly et al. | Jan 1995 | A |
5401543 | O'Neill et al. | Mar 1995 | A |
H1461 | DiVita et al. | Jul 1995 | H |
5432539 | Anderson | Jul 1995 | A |
5433977 | Sarin et al. | Jul 1995 | A |
H1471 | Braun et al. | Aug 1995 | H |
5443032 | Vichr et al. | Aug 1995 | A |
5447208 | Lund et al. | Sep 1995 | A |
5456406 | Lemelson | Oct 1995 | A |
5458754 | Sathrum et al. | Oct 1995 | A |
5461648 | Nauflett et al. | Oct 1995 | A |
5462772 | Lemelson | Oct 1995 | A |
5464667 | Köhler et al. | Nov 1995 | A |
5466431 | Dorfman et al. | Nov 1995 | A |
5479069 | Winsor | Dec 1995 | A |
5482602 | Cooper et al. | Jan 1996 | A |
5491028 | Sarin et al. | Feb 1996 | A |
5497550 | Trotta et al. | Mar 1996 | A |
5509841 | Winsor | Apr 1996 | A |
5516729 | Dawson et al. | May 1996 | A |
5529815 | Lemelson | Jun 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5541566 | Deeney | Jul 1996 | A |
5547716 | Thaler | Aug 1996 | A |
5551959 | Martin et al. | Sep 1996 | A |
5552675 | Lemelson | Sep 1996 | A |
5568391 | Mckee | Oct 1996 | A |
5593719 | Dearnaley et al. | Jan 1997 | A |
5616372 | Conley et al. | Apr 1997 | A |
5619889 | Jones et al. | Apr 1997 | A |
5628881 | Lemelson | May 1997 | A |
5630275 | Wexler | May 1997 | A |
5630953 | Klink | May 1997 | A |
5653300 | Lund et al. | Aug 1997 | A |
5669144 | Hahn et al. | Sep 1997 | A |
5672054 | Cooper et al. | Sep 1997 | A |
5688557 | Lemelson et al. | Nov 1997 | A |
5707409 | Martin et al. | Jan 1998 | A |
5714202 | Lemelson et al. | Feb 1998 | A |
5719109 | Tokashiki et al. | Feb 1998 | A |
5723207 | Lettington et al. | Mar 1998 | A |
5731046 | Mistry et al. | Mar 1998 | A |
5735769 | Takemura et al. | Apr 1998 | A |
5740941 | Lemelson | Apr 1998 | A |
5771873 | Potter et al. | Jun 1998 | A |
5775817 | Gottemoller et al. | Jul 1998 | A |
5786038 | Conley et al. | Jul 1998 | A |
5790146 | Anderson | Aug 1998 | A |
5793390 | Claflin et al. | Aug 1998 | A |
5794801 | Lemelson | Aug 1998 | A |
5799549 | Decker et al. | Sep 1998 | A |
5806557 | Helge | Sep 1998 | A |
5824387 | Boutaghou et al. | Oct 1998 | A |
5834708 | Svetal et al. | Nov 1998 | A |
5843571 | Sho | Dec 1998 | A |
5851962 | Kaga | Dec 1998 | A |
5866195 | Lemelson | Feb 1999 | A |
5871805 | Lemelson | Feb 1999 | A |
5881444 | Schaefer et al. | Mar 1999 | A |
5901021 | Hirano et al. | May 1999 | A |
5910940 | Guerra | Jun 1999 | A |
5927897 | Attar | Jul 1999 | A |
5937812 | Reedy et al. | Aug 1999 | A |
5940975 | Decker et al. | Aug 1999 | A |
5945214 | Ma et al. | Aug 1999 | A |
5947710 | Cooper et al. | Sep 1999 | A |
5952102 | Cutler | Sep 1999 | A |
5958261 | Offer et al. | Sep 1999 | A |
5960762 | Imai | Oct 1999 | A |
5967250 | Lund et al. | Oct 1999 | A |
5968596 | Ma et al. | Oct 1999 | A |
5975686 | Hauck et al. | Nov 1999 | A |
5976707 | Grab | Nov 1999 | A |
5992268 | Decker et al. | Nov 1999 | A |
5993938 | Tsukuda et al. | Nov 1999 | A |
6006415 | Schaefer et al. | Dec 1999 | A |
6015597 | David | Jan 2000 | A |
6016000 | Moslehi | Jan 2000 | A |
6023979 | Bills et al. | Feb 2000 | A |
6028393 | Izu et al. | Feb 2000 | A |
6051298 | Ko et al. | Apr 2000 | A |
6056443 | Koike et al. | May 2000 | A |
6059460 | Ono et al. | May 2000 | A |
6059830 | Lippincott, III et al. | May 2000 | A |
6071597 | Yang et al. | Jun 2000 | A |
6083313 | Venkatraman et al. | Jul 2000 | A |
6083570 | Lemelson et al. | Jul 2000 | A |
6095690 | Niegel et al. | Aug 2000 | A |
6099541 | Klopotek | Aug 2000 | A |
6099976 | Lemelson et al. | Aug 2000 | A |
6106919 | Lee et al. | Aug 2000 | A |
6124198 | Moslehi | Sep 2000 | A |
6139964 | Sathrum et al. | Oct 2000 | A |
6142481 | Iwashita et al. | Nov 2000 | A |
6145608 | Lund et al. | Nov 2000 | A |
6145763 | Fleming et al. | Nov 2000 | A |
6156439 | Coffinberry | Dec 2000 | A |
6159558 | Wolfe et al. | Dec 2000 | A |
6160683 | Boutaghou | Dec 2000 | A |
6165616 | Lemelson et al. | Dec 2000 | A |
6170156 | Lev et al. | Jan 2001 | B1 |
6171343 | Dearnaley et al. | Jan 2001 | B1 |
6173913 | Shafer et al. | Jan 2001 | B1 |
6190514 | Ma et al. | Feb 2001 | B1 |
6193906 | Kaneko et al. | Feb 2001 | B1 |
6197120 | David | Mar 2001 | B1 |
6197428 | Rogers | Mar 2001 | B1 |
6203651 | Järvenkylä et al. | Mar 2001 | B1 |
6205291 | Hughes et al. | Mar 2001 | B1 |
6207625 | Ogano et al. | Mar 2001 | B1 |
6213075 | Ajayi et al. | Apr 2001 | B1 |
6227056 | Bills et al. | May 2001 | B1 |
6237441 | Nishioka et al. | May 2001 | B1 |
6237852 | Svetal et al. | May 2001 | B1 |
6238839 | Tomita et al. | May 2001 | B1 |
6255262 | Keenan et al. | Jul 2001 | B1 |
6261424 | Goncharenko et al. | Jul 2001 | B1 |
6273793 | Liners et al. | Aug 2001 | B1 |
6274220 | Tsukuda et al. | Aug 2001 | B1 |
6289593 | Decker et al. | Sep 2001 | B1 |
6293648 | Anderson | Sep 2001 | B1 |
6296552 | Boutaghou et al. | Oct 2001 | B1 |
6299425 | Hirano et al. | Oct 2001 | B1 |
6305416 | Snel et al. | Oct 2001 | B1 |
6309283 | Liners et al. | Oct 2001 | B1 |
6311524 | Brennan, III et al. | Nov 2001 | B1 |
6316734 | Yang | Nov 2001 | B1 |
6322431 | Schaenzer et al. | Nov 2001 | B1 |
6322719 | Kaneko et al. | Nov 2001 | B2 |
6324060 | Hsu | Nov 2001 | B1 |
6325385 | Iwashita et al. | Dec 2001 | B1 |
6329328 | Koganei et al. | Dec 2001 | B1 |
6333298 | Waddoups et al. | Dec 2001 | B1 |
6338881 | Sellschopp et al. | Jan 2002 | B1 |
6340245 | Horton et al. | Jan 2002 | B1 |
6358123 | Liners et al. | Mar 2002 | B1 |
6367439 | Nishioka et al. | Apr 2002 | B1 |
6367705 | Lee et al. | Apr 2002 | B1 |
6368676 | Gaudreau et al. | Apr 2002 | B1 |
6377422 | Boutaghou et al. | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6385987 | Schlom et al. | May 2002 | B2 |
6386468 | Neuberger et al. | May 2002 | B1 |
6399215 | Zhu et al. | Jun 2002 | B1 |
6401058 | Akalin et al. | Jun 2002 | B1 |
6439845 | Veres | Aug 2002 | B1 |
6439986 | Myoung et al. | Aug 2002 | B1 |
6452752 | Boutaghou | Sep 2002 | B1 |
6468642 | Bray et al. | Oct 2002 | B1 |
6471979 | New et al. | Oct 2002 | B2 |
6482476 | Liu | Nov 2002 | B1 |
6494881 | Bales et al. | Dec 2002 | B1 |
6514298 | Haji et al. | Feb 2003 | B2 |
6523456 | Kobayashi et al. | Feb 2003 | B1 |
6524212 | Ushijima et al. | Feb 2003 | B2 |
6534141 | Hull, Jr. et al. | Mar 2003 | B1 |
6537310 | Palmaz et al. | Mar 2003 | B1 |
6537429 | O'Donnell et al. | Mar 2003 | B2 |
6543394 | Tinney | Apr 2003 | B2 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6553957 | Ishikawa et al. | Apr 2003 | B1 |
6557968 | Lee et al. | May 2003 | B2 |
6562445 | Iwamura | May 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6570172 | Kim et al. | May 2003 | B2 |
6572651 | DeScheerder et al. | Jun 2003 | B1 |
6572935 | He et al. | Jun 2003 | B1 |
6572937 | Hakovirta et al. | Jun 2003 | B2 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6586069 | Dykes et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592519 | Martinez | Jul 2003 | B1 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6626949 | Townley | Sep 2003 | B1 |
6629906 | Chiba et al. | Oct 2003 | B1 |
6637528 | Nishiyama et al. | Oct 2003 | B2 |
6638569 | McLaughlin et al. | Oct 2003 | B2 |
6645354 | Gorokhovsky | Nov 2003 | B1 |
6656329 | Ma et al. | Dec 2003 | B1 |
6658941 | Bills et al. | Dec 2003 | B1 |
6666328 | Sykora | Dec 2003 | B2 |
6666671 | Olver et al. | Dec 2003 | B1 |
6679231 | Kabat et al. | Jan 2004 | B2 |
6684513 | Clipstone et al. | Feb 2004 | B1 |
6684759 | Gorokhovsky | Feb 2004 | B1 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6699106 | Myoung et al. | Mar 2004 | B2 |
6701627 | Korb et al. | Mar 2004 | B2 |
6715693 | Dam et al. | Apr 2004 | B1 |
6726993 | Teer et al. | Apr 2004 | B2 |
6729350 | Schick | May 2004 | B2 |
6729527 | Sonnenreich et al. | May 2004 | B2 |
6733513 | Boyle et al. | May 2004 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
6739238 | Ushijima et al. | May 2004 | B2 |
6740393 | Massler et al. | May 2004 | B1 |
6745742 | Meyer | Jun 2004 | B2 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6752332 | Terakado et al. | Jun 2004 | B1 |
6753042 | Bakounine et al. | Jun 2004 | B1 |
6753635 | Kuhlmann-Wilsdorf | Jun 2004 | B2 |
6761532 | Capone et al. | Jul 2004 | B2 |
6761736 | Woo et al. | Jul 2004 | B1 |
6780177 | Shafirstein et al. | Aug 2004 | B2 |
6797326 | Griffin et al. | Sep 2004 | B2 |
6799468 | Borenstein | Oct 2004 | B2 |
6806242 | Shirahama et al. | Oct 2004 | B2 |
6818029 | Myoung et al. | Nov 2004 | B2 |
6820676 | Palmaz et al. | Nov 2004 | B2 |
6821189 | Coad et al. | Nov 2004 | B1 |
6821624 | Utsumi et al. | Nov 2004 | B2 |
6822788 | Blitstein | Nov 2004 | B2 |
6844068 | Miyake et al. | Jan 2005 | B1 |
6849085 | Marton | Feb 2005 | B2 |
6855237 | Kolpakov et al. | Feb 2005 | B2 |
6855791 | Van Doren et al. | Feb 2005 | B2 |
6860255 | Yamaguchi et al. | Mar 2005 | B2 |
6861098 | Griffin et al. | Mar 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6865952 | Bills et al. | Mar 2005 | B2 |
6866894 | Trankiem et al. | Mar 2005 | B2 |
6871700 | Gorokhovsky | Mar 2005 | B2 |
6872203 | Shafirstein et al. | Mar 2005 | B2 |
6878447 | Griffin et al. | Apr 2005 | B2 |
6880469 | Frost | Apr 2005 | B2 |
6882094 | Dimitrijevic et al. | Apr 2005 | B2 |
6883476 | Nohara et al. | Apr 2005 | B1 |
6886521 | Hamada et al. | May 2005 | B2 |
6887585 | Herbst-Dederichs | May 2005 | B2 |
6890700 | Tomita et al. | May 2005 | B2 |
6893720 | Nakahigashi et al. | May 2005 | B1 |
6969198 | Konishi et al. | Nov 2005 | B2 |
20010036800 | Liners et al. | Nov 2001 | A1 |
20020026899 | McLaughlin et al. | Mar 2002 | A1 |
20020031987 | Liners et al. | Mar 2002 | A1 |
20020034631 | Griffin et al. | Mar 2002 | A1 |
20020034632 | Griffin et al. | Mar 2002 | A1 |
20020051286 | Blitstein | May 2002 | A1 |
20020070357 | Kim et al. | Jun 2002 | A1 |
20020074168 | Matthias et al. | Jun 2002 | A1 |
20020089571 | Lee et al. | Jul 2002 | A1 |
20020090155 | Ushijima et al. | Jul 2002 | A1 |
20020090578 | Schaefera et al. | Jul 2002 | A1 |
20020130219 | Parseghian et al. | Sep 2002 | A1 |
20020148430 | Kano et al. | Oct 2002 | A1 |
20020155015 | Esumi et al. | Oct 2002 | A1 |
20020175476 | Chinou et al. | Nov 2002 | A1 |
20030012234 | Watson et al. | Jan 2003 | A1 |
20030019111 | Korb et al. | Jan 2003 | A1 |
20030019332 | Korb et al. | Jan 2003 | A1 |
20030021995 | Griffin et al. | Jan 2003 | A1 |
20030034182 | Griffin et al. | Feb 2003 | A1 |
20030035957 | Griffin et al. | Feb 2003 | A1 |
20030035958 | Griffin et al. | Feb 2003 | A1 |
20030036341 | Myoung et al. | Feb 2003 | A1 |
20030037640 | Griffin et al. | Feb 2003 | A1 |
20030069632 | De Scheerder et al. | Apr 2003 | A1 |
20030084882 | Kabat et al. | May 2003 | A1 |
20030089343 | Yamaguchi et al. | May 2003 | A1 |
20030108777 | Gunsel et al. | Jun 2003 | A1 |
20030114094 | Myoung et al. | Jun 2003 | A1 |
20030128903 | Yasuda et al. | Jul 2003 | A1 |
20030159919 | Fairbairn et al. | Aug 2003 | A1 |
20030162672 | Shirahama et al. | Aug 2003 | A1 |
20030168323 | Frost | Sep 2003 | A1 |
20030180565 | Herbst-Dederichs | Sep 2003 | A1 |
20030199741 | Martinez | Oct 2003 | A1 |
20030234371 | Ziegler | Dec 2003 | A1 |
20030235691 | Griffin et al. | Dec 2003 | A1 |
20040003638 | Schaefer et al. | Jan 2004 | A1 |
20040008406 | Blitstein | Jan 2004 | A1 |
20040010068 | Doren et al. | Jan 2004 | A1 |
20040011900 | Gebhardt et al. | Jan 2004 | A1 |
20040027018 | LeBlanc et al. | Feb 2004 | A1 |
20040035375 | Gibisch et al. | Feb 2004 | A1 |
20040045636 | Poirier et al. | Mar 2004 | A1 |
20040074467 | Hamada et al. | Apr 2004 | A1 |
20040092405 | Konishi et al. | May 2004 | A1 |
20040105806 | Griffin et al. | Jun 2004 | A1 |
20040109621 | Frost | Jun 2004 | A1 |
20040115435 | Griffin et al. | Jun 2004 | A1 |
20040129313 | Aharonov et al. | Jul 2004 | A1 |
20040133301 | Van Doren et al. | Jul 2004 | A1 |
20040154570 | Mabuchi et al. | Aug 2004 | A1 |
20040168326 | Korb et al. | Sep 2004 | A1 |
20040184687 | Morales et al. | Sep 2004 | A1 |
20040223256 | Feng et al. | Nov 2004 | A1 |
20040241448 | Kano et al. | Dec 2004 | A1 |
20040242435 | Nishimura et al. | Dec 2004 | A1 |
20040244539 | Korb et al. | Dec 2004 | A1 |
20040261614 | Hamada et al. | Dec 2004 | A1 |
20050001201 | Bocko et al. | Jan 2005 | A1 |
20050005892 | Nishimura et al. | Jan 2005 | A1 |
20050025975 | Okamoto et al. | Feb 2005 | A1 |
20050037879 | Murata et al. | Feb 2005 | A1 |
20050056241 | Nomura et al. | Mar 2005 | A1 |
20050061291 | Nishimura et al. | Mar 2005 | A1 |
20050061636 | Frost et al. | Mar 2005 | A1 |
20050064196 | Martin et al. | Mar 2005 | A1 |
20050082139 | Ishikawa et al. | Apr 2005 | A1 |
20050084390 | Ueno et al. | Apr 2005 | A1 |
20050089685 | Hamada et al. | Apr 2005 | A1 |
20050098134 | Nishimura et al. | May 2005 | A1 |
20050100701 | Hamada et al. | May 2005 | A1 |
20050115744 | Griffin et al. | Jun 2005 | A1 |
20050188942 | Hamada et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2009582 | Aug 1990 | CA |
1128286 | Aug 1996 | CN |
643 034 | Mar 1937 | DE |
19507086 | Sep 1996 | DE |
19507086 | Sep 1996 | DE |
197 04 224 | Aug 1997 | DE |
198 15 989 | Oct 1999 | DE |
198 25 860 | Dec 1999 | DE |
19825860 | Dec 1999 | DE |
100 17 459 | Oct 2000 | DE |
100 61 397 | May 2002 | DE |
101 58 683 | Jun 2003 | DE |
103 18 135 | Nov 2003 | DE |
10337559 | Mar 2005 | DE |
0 286 996 | Oct 1988 | EP |
0 291 006 | Nov 1988 | EP |
0 299 785 | Jan 1989 | EP |
0308143 | Mar 1989 | EP |
0 333 416 | Sep 1989 | EP |
0378378 | Jul 1990 | EP |
0384772 | Aug 1990 | EP |
0388800 | Sep 1990 | EP |
0392125 | Oct 1990 | EP |
0398985 | Nov 1990 | EP |
407977 | Jan 1991 | EP |
0 435 312 | Jul 1991 | EP |
0474369 | Mar 1992 | EP |
0 500 253 | Aug 1992 | EP |
0511153 | Oct 1992 | EP |
0 529 327 | Mar 1993 | EP |
0392125 | Mar 1993 | EP |
0546824 | Jun 1993 | EP |
0308143 | Nov 1993 | EP |
0573943 | Dec 1993 | EP |
0619504 | Oct 1994 | EP |
0621136 | Oct 1994 | EP |
0624353 | Nov 1994 | EP |
0624354 | Nov 1994 | EP |
0378378 | Jan 1995 | EP |
0651069 | May 1995 | EP |
0652301 | May 1995 | EP |
0656458 | Jun 1995 | EP |
0 661 470 | Jul 1995 | EP |
0396603 | Jun 1996 | EP |
0388800 | Dec 1996 | EP |
0 759 519 | Feb 1997 | EP |
0474369 | Mar 1997 | EP |
0 818 622 | Jan 1998 | EP |
0652301 | Jan 1998 | EP |
0826790 | Mar 1998 | EP |
0842754 | May 1998 | EP |
0 870 820 | Oct 1998 | EP |
0816112 | Oct 1998 | EP |
0882759 | Dec 1998 | EP |
0893677 | Jan 1999 | EP |
0624353 | Feb 1999 | EP |
0656458 | Feb 1999 | EP |
0 905 221 | Mar 1999 | EP |
0 905 419 | Mar 1999 | EP |
0647318 | Mar 1999 | EP |
0651069 | Mar 1999 | EP |
0 731 190 | May 1999 | EP |
0949200 | Oct 1999 | EP |
0845154 | Nov 1999 | EP |
0624354 | Dec 1999 | EP |
0582676 | Mar 2000 | EP |
0990532 | Apr 2000 | EP |
1063085 | Dec 2000 | EP |
1 067 211 | Jan 2001 | EP |
0850126 | Jan 2001 | EP |
1076087 | Feb 2001 | EP |
1078736 | Feb 2001 | EP |
1109196 | Jun 2001 | EP |
0778902 | Sep 2001 | EP |
1 154 012 | Nov 2001 | EP |
0826790 | Nov 2001 | EP |
1034320 | Dec 2001 | EP |
0850133 | Jan 2002 | EP |
0893677 | Jan 2002 | EP |
1184480 | Mar 2002 | EP |
1190791 | Apr 2002 | EP |
1219464 | Jul 2002 | EP |
1 233 054 | Aug 2002 | EP |
0971812 | Oct 2002 | EP |
1018291 | Oct 2002 | EP |
1281513 | Feb 2003 | EP |
1 300 608 | Apr 2003 | EP |
0950123 | May 2003 | EP |
0882759 | Jun 2003 | EP |
1 338 641 | Aug 2003 | EP |
1340605 | Sep 2003 | EP |
1365141 | Nov 2003 | EP |
1083946 | Dec 2003 | EP |
1078736 | Jan 2004 | EP |
1378271 | Jan 2004 | EP |
0757615 | Mar 2004 | EP |
0842754 | Mar 2004 | EP |
1 411 145 | Apr 2004 | EP |
0862395 | Apr 2004 | EP |
1 418 353 | May 2004 | EP |
1440775 | Jul 2004 | EP |
1445119 | Aug 2004 | EP |
1475557 | Nov 2004 | EP |
1481699 | Dec 2004 | EP |
1482190 | Dec 2004 | EP |
1498597 | Jan 2005 | EP |
1 510 594 | Mar 2005 | EP |
1311885 | Mar 2005 | EP |
1512781 | Mar 2005 | EP |
1183470 | Apr 2005 | EP |
2 669 689 | May 1992 | FR |
768226 | Feb 1957 | GB |
1005638 | Oct 1988 | GB |
2338716 | Dec 1999 | GB |
62-111106 | May 1987 | JP |
63-21209 | Jan 1988 | JP |
63-288994 | Nov 1988 | JP |
5-70879 | Mar 1993 | JP |
5-36004 | May 1993 | JP |
5-42616 | Jun 1993 | JP |
6-264993 | Sep 1994 | JP |
6-294307 | Oct 1994 | JP |
7-63135 | Mar 1995 | JP |
7-90553 | Apr 1995 | JP |
7-103238 | Apr 1995 | JP |
07-118832 | May 1995 | JP |
7-41386 | Oct 1995 | JP |
7-286696 | Oct 1995 | JP |
8-14014 | Jan 1996 | JP |
8-61499 | Mar 1996 | JP |
9-20981 | Jan 1997 | JP |
52006318 | Jan 1997 | JP |
253770 | Sep 1997 | JP |
10-088369 | Apr 1998 | JP |
10-265790 | Oct 1998 | JP |
10-298440 | Nov 1998 | JP |
11-22423 | Jan 1999 | JP |
11-190406 | Jul 1999 | JP |
11-292629 | Oct 1999 | JP |
11-294118 | Oct 1999 | JP |
11-333773 | Dec 1999 | JP |
2000-88104 | Mar 2000 | JP |
2000-119843 | Apr 2000 | JP |
2000-504089 | Apr 2000 | JP |
2000-128516 | May 2000 | JP |
2000-297373 | Oct 2000 | JP |
2000-327484 | Nov 2000 | JP |
2000-339083 | Dec 2000 | JP |
2001-62605 | Mar 2001 | JP |
2001-64005 | Mar 2001 | JP |
2001-93141 | Apr 2001 | JP |
2001-172766 | Jun 2001 | JP |
2001-192864 | Jul 2001 | JP |
2001-269938 | Oct 2001 | JP |
2001-280236 | Oct 2001 | JP |
2002-265968 | Sep 2002 | JP |
2002-309912 | Oct 2002 | JP |
2002-332571 | Nov 2002 | JP |
2003-13163 | Jan 2003 | JP |
2003-13799 | Jan 2003 | JP |
2003-25117 | Jan 2003 | JP |
2003-28174 | Jan 2003 | JP |
2003-88939 | Mar 2003 | JP |
2003-113941 | Apr 2003 | JP |
2003-147508 | May 2003 | JP |
2004-36788 | Feb 2004 | JP |
2005-68529 | Mar 2005 | JP |
2004586 | Dec 1993 | RU |
2153782 | Jul 2000 | RU |
1770350 | Oct 1992 | SU |
WO 8906707 | Jul 1989 | WO |
WO 8906708 | Jul 1989 | WO |
WO 8906338 | Jul 1989 | WO |
WO 9202602 | Feb 1992 | WO |
WO 9206843 | Apr 1992 | WO |
WO 9219425 | Nov 1992 | WO |
WO 9321288 | Oct 1993 | WO |
WO 9321289 | Oct 1993 | WO |
WO 9324828 | Dec 1993 | WO |
WO 9520253 | Jul 1995 | WO |
WO 9529044 | Nov 1995 | WO |
WO 9529273 | Nov 1995 | WO |
WO 9531584 | Nov 1995 | WO |
WO 9604485 | Feb 1996 | WO |
WO 9605333 | Feb 1996 | WO |
WO 9605942 | Feb 1996 | WO |
WO 9606961 | Mar 1996 | WO |
WO 9612389 | Apr 1996 | WO |
WO 9624488 | Aug 1996 | WO |
WO 9640446 | Dec 1996 | WO |
WO 9707531 | Feb 1997 | WO |
WO 9710093 | Mar 1997 | WO |
WO 9710940 | Mar 1997 | WO |
WO 9714555 | Apr 1997 | WO |
WO 9716138 | May 1997 | WO |
WO 9802715 | Jan 1998 | WO |
WO 9812994 | Apr 1998 | WO |
WO 9813528 | Apr 1998 | WO |
WO 9847141 | Oct 1998 | WO |
WO 9909547 | Feb 1999 | WO |
WO 9912404 | Mar 1999 | WO |
WO 9914512 | Mar 1999 | WO |
WO 9916371 | Apr 1999 | WO |
WO 9922694 | May 1999 | WO |
WO 9927157 | Jun 1999 | WO |
WO 9929477 | Jun 1999 | WO |
WO 9931557 | Jun 1999 | WO |
WO 9934385 | Jul 1999 | WO |
WO 9946847 | Sep 1999 | WO |
WO 9954520 | Oct 1999 | WO |
WO 9954934 | Oct 1999 | WO |
WO 9957743 | Nov 1999 | WO |
WO 9962077 | Dec 1999 | WO |
WO 9962572 | Dec 1999 | WO |
WO 0022613 | Apr 2000 | WO |
WO 0024554 | May 2000 | WO |
WO 0025410 | May 2000 | WO |
WO 0028142 | May 2000 | WO |
WO 0033051 | Jun 2000 | WO |
WO 0035000 | Jun 2000 | WO |
WO 0044032 | Jul 2000 | WO |
WO 0047402 | Aug 2000 | WO |
WO 0055385 | Sep 2000 | WO |
WO 0056127 | Sep 2000 | WO |
WO 0056393 | Sep 2000 | WO |
WO 0062327 | Oct 2000 | WO |
WO 0068451 | Nov 2000 | WO |
WO 0075517 | Dec 2000 | WO |
WO 0078504 | Dec 2000 | WO |
WO 0105917 | Jan 2001 | WO |
WO 0106033 | Feb 2001 | WO |
WO 0114736 | Mar 2001 | WO |
WO 0114745 | Mar 2001 | WO |
WO 0126862 | Apr 2001 | WO |
WO 0137631 | May 2001 | WO |
WO 0140537 | Jun 2001 | WO |
WO 0147451 | Jul 2001 | WO |
WO 0159544 | Aug 2001 | WO |
WO 0161182 | Aug 2001 | WO |
WO 0161719 | Aug 2001 | WO |
WO 0162372 | Aug 2001 | WO |
WO 0163639 | Aug 2001 | WO |
WO 0167834 | Sep 2001 | WO |
WO 0179583 | Oct 2001 | WO |
WO 0180224 | Oct 2001 | WO |
WO 0206875 | Jan 2002 | WO |
WO 0213188 | Feb 2002 | WO |
WO 0224601 | Mar 2002 | WO |
WO 0224603 | Mar 2002 | WO |
WO 0224970 | Mar 2002 | WO |
WO 0232625 | Apr 2002 | WO |
WO 0244440 | Jun 2002 | WO |
WO 02054454 | Jul 2002 | WO |
WO 02062714 | Aug 2002 | WO |
WO 02073021 | Sep 2002 | WO |
WO 02080996 | Oct 2002 | WO |
WO 02085237 | Oct 2002 | WO |
WO 02090461 | Nov 2002 | WO |
WO 02097289 | Dec 2002 | WO |
WO 03009978 | Feb 2003 | WO |
WO 03013990 | Feb 2003 | WO |
WO 03020329 | Mar 2003 | WO |
WO 03021731 | Mar 2003 | WO |
WO 03031543 | Apr 2003 | WO |
WO 03046508 | Jun 2003 | WO |
WO 03054876 | Jul 2003 | WO |
WO 03076309 | Sep 2003 | WO |
WO 03078679 | Sep 2003 | WO |
WO 03091758 | Nov 2003 | WO |
WO 03095009 | Nov 2003 | WO |
WO 03105134 | Dec 2003 | WO |
WO 2004001804 | Dec 2003 | WO |
WO 2004004998 | Jan 2004 | WO |
WO 2004019809 | Mar 2004 | WO |
WO 2004024206 | Mar 2004 | WO |
WO 2004026359 | Apr 2004 | WO |
WO 2004026500 | Apr 2004 | WO |
WO 2004036169 | Apr 2004 | WO |
WO 2004036292 | Apr 2004 | WO |
WO 2004038701 | May 2004 | WO |
WO 2004043631 | May 2004 | WO |
WO 2004048126 | Jun 2004 | WO |
WO 2004067466 | Aug 2004 | WO |
WO 2004068530 | Aug 2004 | WO |
WO 2004071670 | Aug 2004 | WO |
WO 2004072959 | Aug 2004 | WO |
WO 2004078424 | Sep 2004 | WO |
WO 2004084773 | Oct 2004 | WO |
WO 2004088113 | Oct 2004 | WO |
WO 2005010596 | Feb 2005 | WO |
WO 2005011744 | Feb 2005 | WO |
WO 2005014760 | Feb 2005 | WO |
WO 2005014882 | Feb 2005 | WO |
WO 2005016620 | Feb 2005 | WO |
WO 2005021851 | Mar 2005 | WO |
WO 2005025844 | Mar 2005 | WO |
WO 2005034791 | Apr 2005 | WO |
WO 2005037144 | Apr 2005 | WO |
WO 2005037985 | Apr 2005 | WO |
WO 2005040451 | May 2005 | WO |
WO 2005042064 | May 2005 | WO |
WO 2005047737 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050035222 A1 | Feb 2005 | US |