Information
-
Patent Grant
-
6779743
-
Patent Number
6,779,743
-
Date Filed
Thursday, June 19, 200321 years ago
-
Date Issued
Tuesday, August 24, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 239 494
- 239 5331
- 239 5332
- 239 5333
- 239 53311
- 239 53312
- 239 53314
- 239 53315
- 239 5851
- 239 5852
- 239 5853
- 239 5854
- 239 5855
- 239 596
-
International Classifications
-
Abstract
In a fuel injection valve including a flat fuel diffusion chamber provided between a valve seat member and an injector plate to widen radially outwards from an outer end edge of a valve seat bore, an annular step is formed on a ceiling surface of the fuel diffusion chamber so that a level of the ceiling surface is gradually lowered radially outwards, and fuel injection orifices are disposed immediately below the step and at a distance from an inner peripheral wall of the fuel diffusion chamber. Thus, a fuel spread radially in the fuel diffusion chamber is allowed to collide with the annular step, leading to an enhancement in fuel diffusing effect, so that it is possible to further promote the atomization of the fuel injected from the fuel injection orifices and to form more stable fuel spray forms.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a fuel injection valve used mainly in a fuel supply system for an internal combustion engine, and particularly to an improvement in a fuel injection valve comprising: a valve member; a valve seat member which has a valve seat cooperating with said valve member, and a valve seat bore leading to a downstream end of said valve seat and opening at a front end face said valve seat member; an injector plate coupled to the front end face of said valve seat member and having a plurality of fuel injection orifices; and a flat fuel diffusion chamber provided between said valve seat member and said injector plate to widen radially outwards from an outer end edge of said valve seat bore for dispensing a fuel received therein from said valve seat bore to the plurality of fuel injection orifices in a diffusing manner.
2. Description of the Related Art
A conventional fuel injection valve is already known, as disclosed in, for example, Japanese Patent Application Laid-open No. 2000-97129.
The conventional injection valve has the following advantage: During opening of the valve member, a high-pressure fuel passed through the valve seat is allowed to flow at a high speed into the fuel diffusion chamber to be diffused, thereby promoting the atomization of the fuel injected from each of the fuel injection orifices in the injector plate and forming stable fuel spray forms.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a fuel injection valve, wherein the fuel-diffusing function of the fuel diffusion chamber can be further enhanced, to thereby further promote the atomization of the fuel injected from the fuel injection orifices and to form more stable fuel spray forms.
To achieve the above object, according to a first feature of the present invention, there is provided a fuel injection valve comprising: a valve member; a valve seat member which has a valve seat cooperating with said valve member, and a valve seat bore leading to a downstream end of said valve seat and opening at a front end face said valve seat member; an injector plate coupled to the front end face of said valve seat member and having a plurality of fuel injection orifices; and a flat fuel diffusion chamber provided between said valve seat member and said injector plate to widen radially outwards from an outer end edge of said valve seat bore for dispensing a fuel received therein from said valve seat bore to the plurality of fuel injection orifices in a diffusing manner; wherein an annular step is formed on a ceiling surface of said fuel diffusion chamber so that a level of the ceiling surface is gradually lowered radially outwards, and said fuel injection orifices are disposed immediately below said step and at a distance from an inner peripheral wall of said fuel diffusion chamber.
With the first feature, during opening of the valve member, the fuel transferred from the valve seat bore into the flat fuel diffusion chamber flows to spread radially. Thereafter, the fuel flowing along the ceiling surface of the fuel diffusion chamber collides with the annular step to be scattered to the periphery, and the flow flowing along a bottom surface of the fuel diffusion chamber collides with the inner peripheral wall of the chamber to be scattered while being bounced back therefrom. The scattered fuel portions again collide with one another immediately above the plurality of fuel injection orifices, whereby the fierce turbulent flow and diffusion of the fuel are caused. As a result, the atomization of the fuel injected from the fuel injection orifices can be effectively promoted, and stable fuel spray forms can be formed and drawn into the engine along with intake air, while being prevented from being deposited to an inner wall of an intake passage for the engine to the utmost. Thus, it is possible to provide enhancements in startability and output performance of the engine as well as a reduction in fuel consumption.
According to a second feature of the present invention, in addition to the first feature, a diameter of a pitch circle of the plurality of fuel injection orifices is equal to a diameter of the annular step.
With the second feature, the fuel turbulent flow generated in the fuel diffusion chamber can be injected with a good efficiently from the fuel injection orifices, thereby effectively promoting the atomization of the fuel.
According to a third feature of the present invention, in addition to the first or second feature, the valve seat bore is formed into a funnel-shape having a diameter increasing toward the fuel diffusion chamber.
With the third feature, the flowing of the fuel from the valve seat bore into the fuel diffusion chamber can be smoothened, whereby a high speed of collision of the fuel with the annular step can be maintained, and the atomization of the fuel injected from the fuel injection orifices can be promoted.
According to a fourth feature of the present invention, in addition to the first or second feature, a plurality of the annular steps having different diameters are formed in a stair-shape on the ceiling surface of the fuel diffusion chamber, and a plurality of the fuel injection orifices are disposed on each of a plurality of pitch circles having different diameters in correspondence to the annular steps, respectively.
With the fourth feature, the fuel transferred from the valve seat bore into the fuel diffusion chamber collides sequentially with the stair-shaped annular steps and the inner peripheral wall of the fuel diffusion chamber, whereby more fierce turbulent flow and diffusion of the fuel are caused, so that the atomization of the fuel injected from the fuel injection orifices can be further effectively promoted.
The above and other objects, features and advantages of the invention will become apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a vertical sectional view of a solenoid-type fuel injection valve for an internal combustion engine according to a first embodiment of the present invention;
FIG. 2
is an enlarged view of a portion indicated by
2
in
FIG. 1
;
FIG. 3
is a sectional view taken along a line
3
—
3
in
FIG. 2
;
FIG. 4
is an enlarged view of essential portions of
FIG. 2
for explaining the operation;
FIG. 5
is a view similar to
FIG. 2
, but showing a second embodiment of the present invention; and
FIG. 6
is an enlarged sectional view taken along a line
6
—
6
in FIG.
5
.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first embodiment of the present invention will first be described with reference to
FIGS. 1
to
4
.
Referring to
FIG. 1
, a casing
1
of a solenoid-type electromagnetic fuel injection valve I for an internal combustion engine is comprised of a cylindrical valve housing
2
(made of a magnetic material), a bottomed cylindrical valve seat member
3
liquid-tightly coupled to a front end of the valve housing
2
, and a cylindrical core
5
liquid-tightly coupled to a rear end of the valve housing
2
with an annular spacer
4
interposed therebetween.
The annular spacer
4
is made of a non-magnetic metal such as stainless steel, and the valve housing
2
and the stationary core
5
are butted against and liquid-tightly welded to opposite end faces of the annular spacer
4
over the entire periphery.
A first fitting tube
3
a
and a second fitting tube
2
a
are formed on opposed end faces of the valve seat member
3
and the valve housing
2
, respectively. The first fitting tube
3
a
is press-fitted into the second fitting tube
2
a
along with a stopper plate
6
, which is clamped between the valve housing
2
and the valve seat member
3
. Thereafter, the valve housing
2
and the valve seat member
3
are liquid-tightly coupled to each other by a laser welding or beam welding carried out over the entire periphery of a corner sandwiched between an outer periphery surface of the first fitting tube
3
a
and an end face of the second fitting tube
2
a.
The valve seat member
3
is provided at its front end face with a conical valve seat
7
which opens at its downstream end, and a cylindrical guide bore
9
connected to an upstream end, i.e., a larger-diameter portion of the valve seat
7
. The guide bore
9
is formed coaxially with the second fitting tube
2
a.
A movable core
12
is slidably received in the valve housing
2
and the annular space
4
and opposed to a front end of the stationary core
5
. A valve member
16
axially slidably received in the guide bore
9
is integrally coupled to the movable core
12
. The valve member
16
is integrally provided with a spherical valve portion
16
a
capable of being seated on the valve seat
7
, a pair of front and rear journal portions
16
b,
16
b
slidably carried in the guide bore
9
, and a flange
16
c
adapted to abut against the stopper plate
6
to define an opening limit for the valve member
16
. A plurality of chamfers
17
are provided on each of the journal portions
16
b
to enable the flowing of a fuel.
The stationary core
5
has a hollow
21
communicating with the interior of the valve housing
2
. The hollow
21
accommodates a coil-shaped valve spring
22
for biasing the movable core
12
in a direction to close the valve member
16
, i.e., toward a direction to seat on the valve seat
7
, and a pipe-shaped retainer
23
for supporting a rear end of the valve spring
22
.
An inlet tube
25
is integrally connected to a rear end of the stationary core
5
, and has a fuel inlet
25
a
communicating with the hollow
21
in the stationary core
5
through the pipe-shaped retainer
23
. A fuel filter
27
is mounted in the fuel inlet
25
a.
A coil assembly
28
is fitted over outer peripheries of the annular spacer
4
and the stationary core
5
. The coil assembly
28
comprises a bobbin
29
fitted over the outer peripheries of the annular spacer
4
and the stationary core
5
, and a coil
30
wound around the bobbin
29
. One end of a coil housing
31
surrounding the coil assembly
28
is coupled by welding to an outer peripheral surface of the valve housing
2
.
The coil housing
31
, the coil assembly
28
and the stationary core
5
are embedded in a cover
32
made of a synthetic resin. A coupler
34
is integrally connected to an intermediate portion of the cover
32
, and accommodates a connecting terminal
33
leading to the coil
30
.
As shown in
FIGS. 2
to
4
, a front end wall of the valve seat member
3
is provided with a valve seat bore
8
arranged coaxially with the valve seat
7
at a location downstream from the valve seat
7
, and a recess
10
which connects the valve seat bore
8
and the valve seat
7
to each other. The recess
10
defines a preliminary diffusion chamber
11
by cooperation with a tip end face of the valve portion
16
a.
An injector plate
36
made of a steel pate is bonded to the front end face of the valve seat member
3
over the entire periphery by a laser beam welding. A plurality of fuel injection orifices
37
are provided in the injector plate
36
on a pitch circle P about an axis of the valve seat
7
. A fuel diffusion chamber
13
is provided between the valve seat member
3
and the injector plate
36
to allow the valve seat bore
8
to communicate with the fuel injection orifices
37
. In the illustrated embodiment, the fuel diffusion chamber
13
is defined by a flat recess
14
widening radially outwards from an outer end edge of the valve seat bore
8
, and an upper surface of the injection plate
36
. Each of the fuel injection orifices
37
is disposed so that its axis is parallel to an axis of the valve seat bore
8
(shown by a solid line in FIG.
4
), or is nearing the axis of the valve seat bore
8
in an axially outward direction (shown by a dashed line in FIG.
4
).
An annular step
15
is formed on a ceiling surface of the fuel diffusion chamber
13
so that its height is reduced gradually radially outwards, and the plurality of fuel injection orifices
37
are disposed immediately below the step
15
. In this case, the pitch circle P passing through a center of each of the plurality of fuel injection orifices
37
has a diameter d set at a value equal to a diameter D of the annular step
15
, whereby the center of each of the fuel injection orifices
37
is disposed substantially immediately below the annular step
15
. Further, the fuel injection orifices
37
are disposed at locations spaced at a given distance apart from an inner peripheral wall
13
a
of the fuel diffusion chamber
13
.
The valve seat bore
8
is formed into a funnel-shape increased in diameter toward the fuel diffusion chamber
13
.
Referring again to
FIG. 1
, an annular seal holder
48
is fitted over the outer peripheries of the valve housing
2
and the valve seat member
3
to extend astride them. An annular groove
46
is defined between the seal holder
48
and a cap
45
made of a synthetic resin and fitted over the front end of the valve seat member
3
. An O-ring
47
is mounted in the annular groove
46
to come into close contact with the outer peripheral surface of the valve seat member
3
. The O-ring
47
is adapted to come into close contact with an inner peripheral surface of a fuel-injection-valve mounting bore in an intake manifold (not shown), when the solenoid-type fuel injection valve I is mounted in the mounting bore.
The operation of the first embodiment will be described below.
In a state in which the coil
30
has been deexcited, the movable core
12
and the valve member
16
are urged forwards by a biasing force of the valve spring
22
, whereby the valve portion
16
a
of the valve member
16
is seated on the valve seat
7
. Therefore, a high-pressure fuel supplied through the fuel filter
27
and the inlet tube
26
into the valve housing
2
is left on standby within the valve housing
2
.
When the coil
30
is excited by supplying electric current thereto, a magnetic flux generated thereby runs sequentially through the stationary core
5
, the coil housing
31
, the valve housing
2
and the movable core
12
, whereby the movable core
12
is attracted to the stationary core
5
along with the valve member
16
by a magnetic force to open the valve seat
7
. Therefore, the high-pressure fuel in the valve housing
2
passes the chamfers
17
of the valve member
16
and the valve seat
7
, and then passes the preliminary diffusion chamber
11
and the valve seat bore
8
into the fuel diffusion chamber
13
. Finally, the fuel is injected from the plurality of the fuel injection orifices
37
into an intake port in the internal combustion engine (not shown).
As best shown in
FIG. 4
, the fuel transferred from the valve seat bore
8
into the flat fuel diffusion chamber
13
flows to radially spread. Thereafter, the fuel A flowing along the ceiling surface of the fuel diffusion chamber
13
collides with the annular step
15
to be scattered to the periphery, and the fuel B flowing along the bottom surface of the fuel diffusion chamber
13
collides with the inner peripheral wall
13
a
of the chamber
13
to be scattered while being bounced back from the inner peripheral wall
13
a.
The scattered fuel portions again collide with one another immediately above the plurality of fuel injection orifices
37
, thereby causing a fierce turbulent flow and diffusion of the fuel. Therefore, the atomization of the fuel injected from the fuel injection orifices
37
is effectively promoted, whereby the stable spray forms of the fuel can be formed and drawn into the engine along with intake air. Thus, it is possible to provide enhancements in startability and output performance of the engine as well as a reduction in fuel consumption.
In addition, since the valve seat bore
8
is formed into the funnel-shape having a diameter increasing toward the fuel diffusion chamber
13
, the flowing of the fuel from the valve seat bore
8
into the fuel diffusion chamber
13
can be smoothened, whereby a high speed of collision of the fuel with the annular step
15
can be maintained, thereby contributing to the atomization of the fuel injected from the fuel injection orifices
37
and the formation of the stable spray forms.
Further, the fuel flowing from the valve seat bore
8
along the bottom surface of the fuel diffusion chamber
13
includes a portion C immediately takes a course bent in a direction toward the fuel injection orifices
37
. The fuel portion having taken the course toward the fuel injection orifices
37
collides with the inner surface of each of the fuel injection orifices
37
at a substantially right angle to thereby cause a fierce turbulent flow, because the axis of each of the fuel injection orifices
37
is parallel to the axis of the valve seat bore
8
, or is inclined so that it is nearing the axis of the valve seat bore
8
in an axially outward direction. Thus, when such fuel is injected from the fuel injection orifices
37
, it can be peeled off from the surface of the injector plate
36
. This also contributes to the promotion of the atomization of the fuel and the formation of the stable spray forms.
A second embodiment of the present invention will now be described with reference to
FIGS. 5 and 6
.
In the second embodiment, a plurality of (two in the illustrated embodiment) annular steps
151
and
152
having different diameters D1 and D2 are formed concentrically and in a stair-shape on a ceiling surface of the fuel diffusion chamber
13
. A plurality of fuel injection orifices
371
is disposed immediately below the larger diameter-annular step
151
on a pitch circle P
1
having a diameter d1 equal to the diameter D1 of the larger-diameter annular step
151
. A plurality of fuel injection orifices
372
is disposed immediately below the smaller-diameter annular step
152
on a pitch circle P
2
having a diameter d2 equal to the diameter D2 of the smaller-diameter annular step
152
. The fuel injection orifices
371
and
372
are disposed with their phases displaced from each other. The arrangement of the other components is the same as that in the previous embodiment. Hence, the portions or components corresponding to those in the previous embodiment are designated by the same reference numerals and symbols in
FIGS. 5 and 6
and the description of them is omitted.
In the second embodiment, the fuel transferred from the valve seat bore
8
into the fuel diffusion chamber
13
collides sequentially with the plurality of stages of the larger and smaller annular steps
151
and
152
and the inner peripheral wall of the fuel diffusion chamber
13
, whereby the turbulent flow and diffusion of the fuel are further fiercely caused. Thus, it is possible to further effectively promote the atomization of the fuel injected from each of the fuel injection orifices
371
and
372
and to form further stable spray forms of the fuel.
It will be understood that the present invention is not limited to the above-described embodiments, and various modifications in design may be made without departing from the spirit and scope of the invention defined in claims.
Claims
- 1. A fuel injection valve comprising: a valve member; a valve seat member which has a valve seat cooperating with said valve member, and a valve seat bore leading to a downstream end of said valve seat and opening at a front end face said valve seat member; an injector plate coupled to the front end face of said valve seat member and having a plurality of fuel injection orifices; and a flat fuel diffusion chamber provided between said valve seat member and said injector plate to widen radially outwards from an outer end edge of said valve seat bore for dispensing a fuel received therein from said valve seat bore to the plurality of fuel injection orifices in a diffusing manner;wherein an annular step is formed on a ceiling surface of said fuel diffusion chamber so that a level of the ceiling surface is gradually lowered radially outwards, and said fuel injection orifices are disposed immediately below said step and at a distance from an inner peripheral wall of said fuel diffusion chamber.
- 2. A fuel injection valve according to claim 1, wherein a diameter of a pitch circle of the plurality of fuel injection orifices is equal to a diameter of said annular step.
- 3. A fuel injection valve according to claim 1 or 2, wherein said valve seat bore is formed into a funnel-shape having a diameter increasing toward said fuel diffusion chamber.
- 4. A fuel injection valve according to claim 1 or 2, wherein a plurality of the annular steps having different diameters are formed in a stair-shape on the ceiling surface of said fuel diffusion chamber, and a plurality of the fuel injection orifices are disposed on each of a plurality of pitch circles having different diameters in correspondence to said annular steps, respectively.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-178457 |
Jun 2002 |
JP |
|
US Referenced Citations (5)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2000-97129 |
Apr 2000 |
JP |