The subject matter disclosed herein generally relates to gas turbine engines. More particularly, the disclosure concerns a pre-mixing fuel nozzle for gas turbine engine combustors, as well as to gas turbine engine combustors.
Gas turbine engines, for both aircraft and industrial applications, include at least one combustor in which fuel, either in gaseous or liquid form, is mixed with a compressed air stream and burned to generate a flow of hot, pressurized combustion gas. The combustion gas is expanded in a turbine including one or more turbine stages to generate mechanical power. Part of the mechanical power generated by the turbine is used to drive the compressor of the gas turbine engine and to support continuous supply of combustion air to the combustor. The remaining available power is used to either drive a load, such as an electric generator or a compressor, or to generate a thrust for aircraft propulsion.
The combustor includes a combustion chamber and a plurality of fuel nozzles, which have the function of introducing a liquid or gaseous fuel into the stream of compressed air from the air compressor and obtain a mixture of combustion air and fuel. At start-up, the mixture is ignited to burn the fuel. By continuing feed of compressed air and fuel to the combustor, the combustion process is maintained to generate a continuous flow of compressed, hot combustion gas to operate the turbine.
Control of the flame in the combustor is one of the critical aspects of fuel nozzle design. One of the aims of nozzle design is reduction of noxious emissions, such as nitrogen oxides (NOx), carbon monoxide and unburned hydrocarbons. Further points of concern are the reduction of flame instability, the reduction of acoustic pressure dynamics or oscillations (i.e. combustion noise) and the reduction of lean blowout risks, as well as the reduction of the formation of hot spots in the combustion chambers, due to asymmetrical temperature profiles, for instance.
In this context, an important aspect is the stability of the shape and spatial position of the flame. Changes in the flame shape and flame position during operation of the combustor may adversely affect noxious emissions of the gas turbine engine and increase acoustic pressure dynamics and oscillations.
An improved fuel nozzle design aimed at reducing flame instability in terms of shape and position would, therefore, be welcomed in the art.
In embodiments disclosed herein, the fuel injector includes a fuel infeed chamber having an end wall, and a centerbody extending along a longitudinal axis from the end wall to a distal end of the centerbody. An outer sleeve surrounds the centerbody and extends along the axis of the centerbody, from the end wall to a distal end of the outer sleeve, opposite the fuel infeed chamber. An annular premix chamber is thus defined between the outer sleeve and the centerbody.
The premix chamber has an annular outlet at the distal end of the outer sleeve. The centerbody includes a distal tip ending at the distal end of the centerbody and projecting outside the premix chamber, beyond the distal end of the outer sleeve, inside the combustion chamber.
According to further embodiments disclosed herein, the centerbody has an additional fluid conduit extending along the centerbody and fluidly coupled to at least one outlet port at the distal tip of the centerbody. In use, fuel, air or an air/fuel mixture can be delivered through the additional fluid conduit towards the distal tip of the centerbody, depending upon the operating conditions of the gas turbine in which the fuel injector is located.
The outlet port can be arranged on the axis of the centerbody, or in an off-axis position. In embodiments, more than one outlet port can be provided.
According to a further aspect, disclosed herein is a fuel nozzle for a gas turbine engine, which fuel nozzle includes one or more fuel injectors as outlined above.
The present disclosure also concerns a combustor assembly for a gas turbine engine. In one embodiment, the combustor assembly has a combustion chamber extending from an upstream end to a downstream end. The downstream end is adapted to be fluidly coupled to a turbine of the gas turbine engine and the upstream end is further adapted to be fluidly coupled to an air compressor of the gas turbine engine. The combustor assembly also has at least one fuel nozzle as outlined above.
Also disclosed herein is a gas turbine engine comprising a combustor assembly.
In the present description and annexed claims, the terms “upstream” and “downstream” refer to the direction of air, fuel or air-fuel mixture, unless differently specified.
Reference is now made briefly to the accompanying drawings, in which:
To improve flame shape and flame position stability in a combustor for a gas turbine engine, a new fuel injector is provided, which has a fuel infeed chamber and a centerbody, extending along a longitudinal axis from a proximal end of the centerbody, adjacent the fuel infeed chamber, to a distal end of the centerbody. The distal end is arranged downstream of the proximal end with respect to the direction of flow of the fuel-air mixture. An outer sleeve extends around the centerbody. The outer sleeve extends from the fuel infeed chamber towards the combustion chamber and ends with an annular edge, opposite the fuel infeed chamber. The outer sleeve includes side apertures for feeding air inside an annular premix chamber, also referred to as premixer, formed between the centerbody and the outer sleeve. The centerbody includes ports for feeding fuel in the annular premix chamber.
In operation, air and fuel pre-mix in the annular premix chamber, or premixer, and the fuel-air mixture exiting the annular premix chamber burns forming a flame extending towards the interior of the combustion chamber. To improve stability of the flame, both regarding the shape as well as the position thereof, i.e. the point where it is located with respect to a fuel nozzle (which includes one or more of the new fuel injectors), the centerbody comprises a distal tip projecting outside the annular premix chamber, beyond the distal end of the outer sleeve. The distal tip projecting beyond the premix chamber, or premixer, can have a convex outer surface. In embodiments, the distal tip has a surface of revolution coaxial with the centerbody. For instance, the distal tip may have a dome shape, a spherical-cup shape, a hemispherical shape, an ogival shape or the like. In general, the distal tip has an aerodynamic shape. Advantageously, the distal tip, projecting beyond the premix chamber is connected to the portion of the centerbody inside the premix chamber with a curved surface.
Embodiments of the invention are suitable for all types of gas turbine engines, regardless of end use application. Fuel injectors disclosed herein can be used in aero-derivative gas turbines, as well as industrial, heavy duty gas turbines. In the following description reference will be made to a gas turbine for mechanical drive, but those skilled in the art will understand that the fuel injectors of the present disclosure can be used also in gas turbines for electric generation, as well as for air propulsion.
While in the following description reference is made specifically to combustors including an annular combustion chamber, it shall be understood that fuel injectors and fuel nozzles including features of the present description can be used also in other kinds of combustors, for instance including can combustion chambers or turbo-annular combustion chambers.
Turning now to the drawings,
The gas turbine engine 1 includes an air compressor 5, a combustor 7 and a turbine section 9. By way of example only, in
The exemplary gas turbine engine of
According to some embodiments, the combustor 7 comprises an annular combustion chamber 11, as schematically shown in
Each fuel nozzle 17 generally includes a plurality of fuel injectors 19, as best shown in
Each fuel injector 19 comprises a fuel infeed chamber 21 comprising an end wall 23 facing the combustion chamber 11, i.e. oriented towards the combustion chamber 11 and the turbine section 9. The fuel infeed chambers 21 of the fuel injectors 19 belonging to the fuel nozzle 17 can be combined to form a fuel infeed plenum 25. In other embodiments, each fuel infeed chamber 21 may form an individual fuel infeed plenum 25 fluidly coupled to a single fuel injector 19.
The fuel infeed plenum 25 is in fluid communication with a fuel feed duct contained in the fuel injector structure 27 (
Each fuel injector 19 further includes a centerbody 31, which extends along a longitudinal axis B-B, from a proximal end, or upstream end, at the end wall 23, towards a distal end, or downstream end 33 of the centerbody 31, facing the interior of the combustion chamber 11 and the turbine section 9.
Each fuel injector 19 further comprises an outer sleeve 35. The outer sleeve 35 can be coaxial to the respective centerbody 31. In other embodiments, the centerbody 31 and the outer sleeve 35 can be not coaxial to one another.
Each outer sleeve 35 extends from a proximal end at the end wall 23 of the fuel infeed chamber 21, to a distal end 37. The outer sleeves 35 belonging to the same fuel nozzle 17 are coupled to a common front wall 36.
In the embodiment shown in
Each outer sleeve 35 comprises a plurality of air inlet ports 41 extending therethrough and in fluid communication with an annular premix chamber 43, or premixer, formed between the centerbody 31 and the outer sleeve 35. The annular premix chamber 43 has a bottom at the end wall 23 of the fuel infeed chamber 21 and an annular outlet 45 surrounded by the distal end 37 of the outer sleeve 35.
If the outer sleeve 35 and the centerbody 31 are coaxial, as shown in
Compressed air delivered by the air compressor 5 (see arrows A in
The distal end 33 of each centerbody 31 features a distal tip 47, which projects in the combustion chamber 11 beyond the annular outlet 45 of the annular premix chamber 43. In some embodiments, the distal tip 47 has a convex outer surface, for instance approximately hemispherical, or dome-shaped, or in the shape of a spherical cup or ogival-shaped.
More generally, the distal tip 47 of each centerbody 31 projects beyond the annular outlet 45 of the premix chamber 43 with a portion which is shaped such as to prevent the air/fuel mixture from forming a recirculation area (negative or low axial speed).
In some embodiments, the distal tip 47 of the centerbody 31 tapers from the annular outlet 45 of the annular premix chamber 43 towards the combustion chamber 11, and may end with a cusp, or a rounded or flattened vertex. The tapering surface of the distal tip 47, which projects from the annular outlet 45 of the annular premix chamber 43 in the combustion chamber 11, is shaped to avoid gas separation from the wall and gas recirculation, such as to prevent the flame from anchoring or adhering to the centerbody 31.
In some embodiments, the distal tip 47 may have an outer convex surface, which may be defined as a surface of revolution generated by a generatrix rotating around the axis B-B of the centerbody 31. As used herein, a generatrix is a curve that, when moved along a given path, generates a surface. The path directing the motion of the generatrix is called a directrix. More specifically, in embodiments disclosed herein, where the outer convex surface is a surface of revolution, the directrix is a circumferential line. In other embodiments, the directrix can be an elliptical line.
In some embodiments, each centerbody 31 comprises a main body portion housed inside the premix chamber 43, connected to the distal tip 37 of the centerbody projecting outside the premix chamber 43, wherein the main body may have a constant or variable cross section. In some embodiments, as illustrated in the attached drawings each centerbody 31 comprises a main body portion consisting of a first, proximal portion 31A and a second, distal portion 31B. The first portion 31A is proximate to the end wall 23 of the fuel infeed chamber 21, and extending towards the distal end 33 of the centerbody 31. The second portion 31B is located intermediate the first portion 31A and the distal tip 47. The first portion 31A can have a substantially cylindrical shape with a circular or elliptical cross-section. The second portion 31B can have a tapering shape, i.e., a substantially truncated cone shape, with a circular or elliptical cross-section and a transverse dimension (diameter in the case of a circular cross section) increasing from the first portion 31A towards the distal tip 47 of the centerbody 31. The annular premix chamber 43 has consequently a constant annular cross-section along a first portion and a tapering annular cross-section, i.e., a converging cross-section, with a gradually reducing cross-sectional area, towards the annular outlet 45.
As can be appreciated from the sectional view of
A smooth transition zone, as understood herein, can be a zone devoid of sharp edges or corners. Therefore, in the area defining the transition zone the generatrix forming the outer surface of the centerbody is a curve having a continuous derivative.
The transition zone may extend up to the distal end 33 of the centerbody, i.e. to the most downstream end of the centerbody. As mentioned above, the distal tip of the centerbody can end with a cusp, or with a planar or flat surface. At said cusp or end planar or flat surface the derivative of the curve representing the profile may have a discontinuity.
In general, the smooth transition zone also includes at least a portion of the tapering distal tip 47 and preferably the entire tapering portion of the distal tip 47.
In general, the annular premix chamber 43 has a distal portion, ending at the outlet 45 thereof, with a converging shape, i.e. with a cross-sectional area which decreases in a proximal-to-distal direction, i.e. in the direction of flow of the air/fuel mixture, towards the distal tip 47 of the centerbody 31. In the embodiment shown in the attached drawings, the converging shape of the premix chamber is obtained through the conical surface of the centerbody 31 adjacent the downstream end 33 thereof. The air-fuel mixture accelerates when moving in the proximal-to-distal direction along the annular premix chamber 43 until reaching annular outlet.
When the intimately pre-mixed air/fuel mixture formed in the annular premix chamber 43 flows through the annular outlet 45, where the speed of the air/fuel mixture abruptly decreases, the aerodynamic shape of the distal tip 47 ensures a correct flame shape and flame position in the combustion chamber.
In other embodiments, a convergent distal portion of the premix chamber can be obtained by combining a cylindrical shape of the outer surface of the centerbody 31 with a conical inner surface of the distal portion of the outer sleeve 35. The distal portion of the inner surface of the outer sleeve 35 will have, in such case, a gradually decreasing inner diameter moving in the proximal-to-distal direction.
A tapering, i.e., converging, end portion of the premix chamber 43 can be obtained also with a combination of a conical distal portion of the centerbody and a conical distal portion of the inner surface of the outer sleeve 35.
To feed fuel to the annular premix chamber 43, a fuel duct is provided inside the centerbody 31. In some embodiments, the centerbody 31 comprise an axially extending outer tubular wall 51 and an axially extending inner tubular wall 53. The axially extending outer tubular wall 51 and the axially extending inner tubular wall 53 form an annular gap 52 therebetween. More specifically, the axially extending outer tubular wall 51 and the axially extending inner tubular wall 53 extend from the end wall 23 of the fuel infeed chamber 21 toward the distal tip 47 of the respective centerbody 31. The outer tubular wall 51 is integral with the distal tip 47 and the outer surface thereof merges with the convex surface of the distal tip 47 of the centerbody 31. The inner tubular wall 53 ends at a distance from the inner surface of the distal tip 47 of the centerbody 31.
A fuel conduit is thus formed inside the centerbody 31, which extends from the fuel infeed chamber 21 in a first direction along an axial cavity 56 of the inner tubular wall 53 towards the distal end 33 of the centerbody 31, and in a second opposite direction along the annular gap 52 formed between inner tubular wall 53 and outer tubular walls 51, from the distal end 33 of the centerbody 31 towards the fuel infeed chamber 21. At least one, and preferably a plurality of fuel injection ports 57 extend through the outer tubular wall 51, adjacent an end of the annular gap 52 opposite the distal end 33 of the centerbody 31. Fuel is thus delivered from the fuel infeed chamber 21 through the axial cavity 56, the annular gap 52 and the fuel injection ports 57, into the annular premix chamber 43.
In the annular premix chamber 43 the fuel is mixed with compressed air fed by the air compressor 5 of the gas turbine engine 1 and flowing through the air inlet ports 41. Intimately pre-mixed fuel-air mixture formed in the annular premix chamber 43 flows through the annular outlet 45. Once the mixture has been ignited, a flame forms downstream of the distal end 33 of each fuel injector 19 and is sustained by premixed air and fuel continuously fed through the annular premix chamber 43.
It has been discovered that with the above-described enhanced shape and geometry of the distal tip 47 of the centerbody 31, the flame is stable regarding both the shape and the position thereof even under variable operating conditions of the combustor and of the gas turbine engine 1. This results in reduction of noxious emissions, more regular thermal load, reduction of combustion noise and vibrations and in general more efficient control of the combustion conditions.
Specifically, the enhanced shape of the centerbody 31, and in particular of the distal tip 47 thereof, with a smooth transition zone from the main body portion inside the premix chamber 43 to the distal tip 47 outside the premix chamber, results in an aerodynamic shape of the centerbody. The improved aerodynamic shape provides a more uniform flow of the air/fuel mixture, higher velocity and absence of flow recirculation, thus avoiding the risk of the flame becoming anchored to the centerbody or the distal end 37 of the outer sleeve 35. Flame stability is improved and risk of thermal damages to the fuel nozzle due to anchoring of the flame to metal parts of the fuel nozzle is largely prevented.
While in the embodiment of
In the embodiment of
In the embodiments disclosed so far, the fuel injectors 19 are parallel to one another, i.e., the axes B-B of the centerbodies 31 and the axes of the outer sleeves 35 are all parallel to one another. In other embodiments, at least two fuel injectors 19 can be non-parallel to one another.
The non-coaxial arrangement of
In the embodiments described so far, the distal tip 47 has a fully convex shape, with a tapering shape, i.e., with a cross-section that reduces moving from proximal to distal. In other embodiments, the outer surface of the distal tip 47 may be not fully convex. For instance, the distal tip 47 may have a convex outer surface, with grooves extending along planes containing the axis B-B of the centerbody 31, defining flow-guiding channels extending towards the vertex, i.e., the most downstream point, of the distal tip 47 of the centerbody 31.
An exemplary embodiment of a distal tip with a grooved outer surface is shown in
In the embodiment of
A further embodiment of a fuel injector and fuel nozzle according to the present disclosure is shown in
In order to further enhance control of the flame, according to the embodiment of
In the embodiment of
The outlet ports 73 may be circular. In other embodiments, e.g., if the ports are arranged around the axis B-B of the centerbody 31, the outlet ports 73 may have an elongated shape, for instance in a tangential direction around the axis B-B of the centerbody 31, or they may be elongated in a longitudinal direction.
In some embodiments, the additional fluid conduit 71 is coupled with a source of fluid schematically shown at 75, or with two sources of fluid shown at 75 and 77.
In some currently preferred embodiments, the fluid source 75 can be a source of combustion air. In other embodiments, the fluid source 75 can be a source of fuel. If two fluid sources 75, 77 are provided, one fluid source can be an air fluid source and the other can be a fuel source.
Control valves 79, 81 can be provided to control the fluid flow towards and through the one or more additional fluid conduits 71. For instance, one valve 79 can be provided to control a flow of additional combustion air from the source 75 towards the one or more outlet ports 73. A valve 81 can be provided to control a flow of additional fuel from the source 77 towards the one or more outlet ports 73.
In some embodiments, if two or more additional fluid conduits 71 are provided in the centerbody 31, at least one of them may be fluidly coupled with a source of combustion air and the other with a source of fuel.
Through the additional fluid conduit(s), additional combustion air, additional fuel, or a mixture of air and fuel can be delivered at the distal tip of the centerbody 31, to provide an additional means of controlling the shape of the flame. Additional combustion air and/or fuel can be delivered to the distal tip of the centerbody 31 depending upon the operating conditions of the combustor 7, to provide optimum control of the combustion process, enhance shape and position stability of the flame, prevent the flame from attaching to the distal tip of the centerbody 31, i.e., to the burner.
Furthermore, the additional fluid conduit(s) prevent ignition of the flame in low velocity regions and reduce the risk of acoustic interaction. Enhanced thermoacoustic response and reduced emissions, as well as better control of wall tip temperature and durability of the burner are achieved.
A further embodiment of a fuel nozzle including a plurality of fuel injectors is shown in
While in
The second inner volume 32B is in fluid communication with at least one additional fluid conduit 71. An outlet port 73 at the outermost end of the distal tip 47 provides a fluid communication between the second inner volume 32B and the combustion chamber 11.
As mentioned above with regard to
A yet further embodiment of a fuel nozzle including a plurality of fuel injectors is shown in
Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions and additions may be made to that which is specifically disclosed herein without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102021000012134 | May 2021 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/025215 | 5/10/2022 | WO |