The present invention relates to a method of forming a fuel injector clamp and, more particularly, to a method of forming a fuel injector clamp using a powder metal process and to the fuel injector clamp itself.
Fuel injectors in internal combustion gasoline, diesel and other engines are often held in place by a clamping device, termed a fuel injector clamp. Such fuel injector clamps can be made from forged steel or investment castings; some fuel injector clamps are made from suitable powder metals as well. Such fuel injector clamps must be sufficiently strong and rigid to assure proper holding and sealing of the fuel injector during periods of stress.
In certain designs of fuel injector clamps, it is desirable for the fuel injector clamp to be deformable by stress or load. It is important that the fuel injector clamp be able to be deformed within elastic limits such that, the fuel injector clamp responds elastically without failure or cracking.
Accordingly, it is object of the present invention to provide an improved method for the manufacture of a fuel injector clamp utilizing powder metal methods.
It is another object of the present invention to provide an improved fuel injector clamp made of powder metal.
A method of manufacturing a fuel injector clamp utilizing powder metal techniques is provided. Such method includes a powder metal technique involving the provision of a powder metal charge comprising in percent by weight, 0.6-0.9 carbon, 1.5-3.9 copper, 93.2-97.9 iron, with the balance other elements. The powder metal charge is die compacted to a density of 7.0-7.1 grams per cubic centimeter, and then pre-sintered at 1500-1600 degrees Fahrenheit to form a powder metal blank. The powder metal blank is then coated with a suitable lubricant.
The lubricated powder metal blank is then re-compacted to density of at least 7.3 grams per cubic centimeter and then sintered at about 2050 degrees Fahrenheit to form a final powder metal blank in the desired configuration of the fuel injector clamp.
A fuel injector clamp is also provided that is comprised of a compacted sintered powder metal. The fuel injector clamp itself comprises a unitary structure having a generally cylindrical center portion itself having a center opening. A first wing portion extends laterally therefrom, and a second wing portion extends laterally therefrom at a 180 degree angle from the first wing portion. The center portion of the fuel injector clamp includes a lower surface, with a first support edge extending downwardly from the center portion lower surface adjacent the intersection with the first wing portion. A second support edge extends downwardly from the center portion lower surface adjacent the intersection with the second wing portion. The center portion lower surface extends downwardly beyond the lower limits of the first support edge and second support edge.
Upon subjecting the fuel injector clamp to a downward load at the first and second wing portions, the first and second support edges move downwardly elastically to a plane even with the center portion lower surface.
In the drawings,
A method of forming a fuel injector clamp utilizing powder metallurgy techniques is provided. This method comprises the steps of providing a powder metal charge comprising, in percent by weight, 0.6-0.9 carbon, 1.5-3.9 copper, 93.2-97.9 iron, with the balance other elements. The powder metal charge is die compacted to the blank shape of the fuel injector clamp to a density of 7.0-7.1 grams per cubic centimeter. The compacted blank is then pre-sintered at 1500-1600 degrees Fahrenheit, for a period of 15 minutes to form a powder metal blank. This powder metal blank is then coated with suitable lubricant such as EBS-WAX (Ethylene Bi-Stearamide). The lubricated powder metal blank is re-compacted to a density of at least 7.3 grams per cubic centimeter and then sintered at about 2050 degrees Fahrenheit for a period of 10 to 30 minutes to form final powder metal blank. The final powder metal blank has a ductility and elongation to allow strain without permanent deformation of at least two percent.
Referring now to
First wing portion 18 extents laterally from center portion 14 and includes an axial opening 22 extending vertically there through. Fuel injector clamp 10 also includes a second wing portion 20 extending laterally from center portion 14 in a direction 180 degrees from first wing portion 18. Second wing portion 20 also includes an axial opening 24 that extends vertically there through.
Center portion 14 also includes lower surface 16 that itself includes a first support edge 26 extending downwardly along a portion of lower surface 16 adjacent the intersection of first wing portion 18 and center portion 14. A second support edge 28 extends downwardly along a portion of lower surface 16 adjacent the intersection of second wing portion 20 with center portion 14.
Referring now to
In