The present invention relates to a fuel injector closed loop control method.
Closed loop control is a major improvement in fuel injection equipment wherein an electronic command unit constantly adjusts the command signals it sends to the injectors as a function of sensor signals received from said injectors and representative of the actual operation of the injector. Several embodiments for arranging sensors on a injector have been proposed and EP1961952 proposes, with no specific details, the concept of a sensor module grouping several sensors on the top end of a fuel injector body.
Application GB1710526.3, filed 30 Jun. 2017, proposes to arrange a noise sensor in a fixation bush of the electrical connector of the injector, said sensor comprising a piezoelectric washer sandwiched and compressed between a base washer and spring washers. The control method itself is not precisely detailed.
Accordingly, it is an object of the present invention to resolve the above mentioned problems in providing a fuel injector comprising a body in which an electrovalve cooperates with a needle valve member to enable or to prevent fuel injection. The electrovalve moves, in use, to open or to close a spill orifice to vary the pressure in a control chamber and, the needle valve member moving under the influence of said control chamber pressure to open or to close spray holes. The body is hit, in use, by the electrovalve when reaching a closed position of said spill orifice and also when reaching a fully open position of said orifice. The body is hit also by the needle valve member when reaching a closed position said spray holes and also when reaching a fully open position of said holes. Said hits are recorded by a noise sensor fixed to the body, said sensor generating a signal representative of said hits.
The fuel injector further comprises a three-terminals electric connector, two of terminals being connected to the electrovalve, the third terminal being connected to the noise sensor.
Also, the noise sensor comprises a piezo ceramic washer compressed between a base and a ground metal washer, said piezo washer being connected to said third pin.
The invention further extends to a fuel injection equipment of an internal combustion engine comprising a plurality of fuel injectors as mentioned above and also, an electronic command unit (ECU) adapted to control the equipment and to execute a closed loop control method.
The invention is also about the ECU adapted to control a fuel injection equipment mentioned above.
The invention is also about a method to control a fuel injector as mentioned above, said method comprising a reference phase performed when the injector is new, said reference phase comprising the steps of:
and, an operational phase performed during the life time of the injector, said operational phase comprising the steps of:
The operational phase further comprises the step:
Also, during the identifying step:
The present invention is now described by way of example with reference to the accompanying drawings in which:
The schematic of a diesel fuel injection equipment 10 of an internal combustion engine is shown on
The equipment 10 shown has six fuel injectors 12 and, in following the hydraulic stream flow direction, fuel F is drawn from a tank 14 by a feed pump 16 and is delivered to a high pressure pump 18, wherein said fuel is pressurised and sent to a high pressure common rail 20. The pressure in the rail 20 is controlled by a high pressure discharge valve 22 associated to a pressure sensor 24 and, depending on the pressure measured, the high pressure discharge valve 22 closes or opens a return line for fuel in excess to return to the tank 14 and to lower the rail internal pressure. Another valve, not represented, arranged at the inlet of the high pressure pump 18 is also used for the rail pressure control. The fuel F remaining in the rail 20 is delivered to the six injectors 12, part of which being sprayed to fulfill the engine torque and power requirements, the other part serving to operate the injectors and being afterward returned to the tank 14 via another return line.
Many other hydraulic architecture are known with more or less injectors depending on the engine, or without rail, the injectors being directly fed by the pump in rail-less equipment's.
The equipment 10 is controlled by an electronic control unit 26, here after ECU, which executes a closed loop method 100.
In addition to the engine operational data and requirements, the ECU 26 receives signals from the injectors 12 and from the pressure sensor 24 and, said signals received are integrated in the computation of command signals sent to the valve 22, to said another valve at the inlet of the pump 18 and to the injectors 12.
For instance, should the rail inner pressure measured by the sensor 24 and sent to the ECU 26 be lower than what is required by the engine, the ECU sends to the valve 22 a command signal to close the return line so the inner pressure can rise to the required level. To the contrary, should the rail inner pressure measured by the sensor 24 be too high, the ECU sends to the valve a command signal to open said return line for fuel in excess to return to the tank and for the rail inner pressure to drop.
A diesel fuel injector 12 is sketched on
In closed position of the needle CPN, the closing face 38 is urged in sealing contact against a needle seat 40 defined in the body thus preventing fuel injection through the spray holes opening downstream said seat. When opening, the closing face 38 lifts away from the seat 40 enabling fuel injection and, when getting to the fully open position of the needle OPN the stop face 36 abuts against a complementary stop face 41 of the body that stops the upward move of the needle.
To move the needle from a position to the other an electrovalve 42 is commanded to move between a fully open position OPV and a closed position CPV, respectively opening and closing a spill orifice for enabling or preventing fuel captured in a control chamber 45, wherein the needle head extends, to exit and return toward the tank. The electrovalve 42 has a body in which a solenoid 43 cooperates with a magnetic armature-and-stem assembly 44. When being energised, the solenoid generates a magnetic field attracting the armature-and-stem assembly 44 toward said open position OPV. When reaching the closed position CPV (
At both extremities of the displacement, a face of the needle hits a face of the body. In closed position CPN, the closing face 38 knocks on the seat 40 (
The fuel injector further comprises a noise sensor 60 arranged on the injector body. In the embodiment presented, said sensor 60 is compressed between the injector body and a screw head 58, the sensor generating a signal S60 relevant of the knocks K of the needle reaching the closed position CPN or the fully open position OPN and also, of the knocks of the valve reaching the closed position CPV or the fully open position OPV. Said knocks K sound wave travel extremely quickly in the body and the signal S60 is generated quasi simultaneously to the hit generating said knock.
The noise sensor 60 comprises an active piezoelectric member 62 sandwiched between a steel base member 64 and a steel seismic member 66. The base member 64 is against the injector body and is electrically isolated from the injector body by an isolation washer 68 while the seismic member 66, on the opposite side of the piezo-member, is just under the screw head 58 and is electrically connected to the injector body and to the electric ground via said screw 56. Said three members are washers centrally holed so the fixation screw 56 to extend.
The injector further comprises an electric connector 46 having two terminals 47 used to connect the solenoid 43 and, a third terminal 48 to connect the noise sensor 60 and, as shown on
Key steps of the injector operation are now described.
In a preliminary first step, the solenoid 43 is not energised, the valve is in closed position CPV and the needle is in closed position CPN.
In a subsequent second step, the ECU 26 sends an opening command signal which forces the valve to move to the open position OPV. When reaching said fully open position OPV, a first knock K1 is generated.
As the spill orifice is open, the control chamber pressure drops and the needle moves to the open position OPN. When reaching said fully open position OPN a second knock K2 is generated.
In a third step, the ECU ends energisation of the solenoid and, pushed by a spring, the valve moves back to the closed position CPV. When reaching said closed position, a third knock K3 is generated.
As the spill orifice is now closed the control chamber pressure rises again and the needle moves back toward the closed position CPN. When reaching said closed position CPN, a fourth knock K4 is generated.
In reference to
the first knock K1 occurs at about 800 μs,
the second knock K2 at about 1400 μs,
the third knock K3 at about 2400 μs and,
the fourth knock K4 at about 3000 μs.
Also, following the X-time axis, the injection duration (plot FC) is about 2200 μs, from 800 μs to 3000 μs. Starting the injection (FC) at 800 μs indicates that actual opening of the valve occurred even earlier, the first knock K1 only indicating the end of travels of the valve. The start of opening of the valve is known since it corresponds to the opening command signal by the ECU to the solenoid. Determination of the first knock K1 enables to determine precisely the opening travel time of the valve.
Also, to end the injection at 3000 μs, the valve must be closed CPV about 600 μs before.
During its life operation, the characteristics of the injector will drift because of wear of the parts. The closed loop method 100 aims at taking into account that drift into a correction factor in order to always inject the desired fuel quantity.
The closed loop control method 100, comprises the following steps:
For instance, if at step Al was stored a reference duration timing between the first knock K1 and the second knock K2 of 600 μs (1400 μs-800 μs) and if an actual duration is determined to be 650 μs then a drift of 50 μs has happened and, to compensate for said drift, the opening command of the valve should be sent 50 μs earlier in order to correct the injection timing within the engine thermodynamics cycle.
The drift in timing duration happens mainly because of mechanical wear of the parts, therefore said drift is not a punctual event, it remains and is repeated and, that is why after said correction data has been calculated, it is stored and applied automatically in the following injection cycles (method step B8).
Number | Date | Country | Kind |
---|---|---|---|
1715504.5 | Sep 2017 | GB | national |
This application is a national stage application under 35 USC 371 of PCT Application No. PCT/EP2018/075767 having an international filing date of Sep. 24, 2018, which is designated in the United States and which claimed the benefit of GB Patent Application No. 1715504.5 filed on Sep. 25, 2017, the entire disclosures of each are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/075767 | 9/24/2018 | WO | 00 |