The present invention relates to a fuel injector for an internal combustion engine; more particularly to a fuel injector flow director plate sub-assembly having a plate member and a plate retainer; and most particularly to an improved flow director plate retainer for reducing the accumulation of injected fuel on the underside of the retainer and eliminating dripping of fuel therefrom.
Electromagnetic fuel injectors used in internal combustion engines control the discharge of precisely metered quantities of fuel to the engine combustion chambers. Proper control of the shape of fuel discharge results in low exhaust emissions, high fuel economy, and improved driveability performance.
A typical electromagnetic fuel injector includes a solenoid assembly disposed in a generally cylindrical shell defined by a longitudinal axis having a fuel inlet at an upstream end and a nozzle at a downstream end. A reciprocally moveable valve assembly, mounted for linear movement along the longitudinal axis, has a valve end which is adapted to be moved from a seated and fuel sealing position with a cooperating valve seat and seat orifice therethrough, to an open position to define a fuel flow passage through the nozzle. The valve assembly is controlled in its movement by the electromagnetic force of the solenoid assembly, as is known in the art.
A flow director plate sub-assembly, positioned immediately downstream of the valve seat and seat orifice and supported in a fixed position adjacent the nozzle, typically comprises a plate member and a cup-shaped director plate retainer. The plate member has one or more orifices, located at predetermined angles and orientations relative to the longitudinal axis of the solenoid assembly, for targeting and controlling the spray pattern of fuel metered by the valve seat. The plate member typically also includes a circumferential flange. The plate member is held in proper position by the cup shaped director plate retainer which is pressed into a cylindrical recess at the injection end of the injector. The circumferential flange of the plate member cooperates with a nozzle shoulder to position the plate member coaxially with the valve seat.
In the prior art, the relatively large depth of the recess and the relatively large diameter of the recess at the injector tip in comparison to the diameter of the valve seat orifice are desirable for hot fuel handling and for minimizing plugging of the flow director orifice. Unfortunately, the large diameter and depth of the recess downstream of the valve seat also permit metered fuel to accumulate in the recess and to be released toward the combustion chamber during the next injector actuation as a non-controlled and non-atomized droplet. This is undesirable because such a droplet can fail to vaporize completely and cause an over-enrichment of delivered fuel, thereby causing an increase in engine hydrocarbon emissions, unstable engine speed and a reduction in fuel efficiency.
Therefore, what is needed in the art is a means for reducing the accumulation of a fuel drip downstream of the valve seat and a means for eliminating fuel dripping.
Briefly described, a fuel injector flow director plate assembly in accordance with the invention includes a conventional flow director plate for dispersing fuel injected from the nozzle tip of a fuel injector. The flow director plate is seated in a recess in the fuel injector and is retained therein by a director plate retainer. The retainer is formed to include any of several novel means for preventing flow of fuel along the surface of the plate retainer and buildup of fuel in the corner between the plate retainer and the recess wall. In a first embodiment, the retainer is provided with a long skirt having a small diameter within the recess. In a second embodiment, the skirt is shortened. In a third embodiment, the skirt is a spherical section. In a fourth embodiment, the skirt is stepped axially. In a fifth embodiment, the skirt is formed as an axial flange on a separate ring member which is installed outside the retainer itself, the flange protruding through the retainer. In a sixth embodiment, a separate ring member is installed outside the retainer itself and has an opening of diameter smaller than the opening in the retainer. In a seventh embodiment, a separate ring member is installed inside the retainer itself and has an opening of diameter smaller than the opening in the retainer.
These and other features and advantages of the invention will be more fully understood and appreciated from the following description of certain exemplary embodiments of the invention taken together with the accompanying drawings, in which:
a is a split cross-sectional view of a tip of a fuel injector showing a prior art director plate retainer (left side, as in
b is a split cross-sectional view, like that of
c is a cross-sectional view of a tip of a fuel injector showing an improved director plate retainer installed in the fuel injector;
Referring to
A flow director plate sub-assembly 51, positioned downstream of the valve seat and supported in a fixed position below the nozzle, typically comprises a director plate member 48 and a cup shaped director plate retainer 52. The plate member includes one or more orifices 50 located at predetermined angles and orientations, relative to the longitudinal axis of the solenoid assembly, for targeting and controlling the spray pattern of the fuel metered by the valve seat. Plate member 48 is held in axial position by the cup shaped director plate retainer 52 as pressed into a cylindrical recess 54 at the tip end 55 of the injector wherein plate retainer flange 58 engages wall 53 of recess 54. Circumferential flange 56 of plate member 48 cooperates with nozzle shoulder 57 to position the plate member coaxially with valve seat 42.
a and 2b depict the nozzle end of the injector assembly and illustrate the advantages of the present invention. In each drawing, the sides to the left of longitudinal axis 28 show plate member 48 and prior art director plate retainer 52 as in FIG. 1. Surface tension of the fuel causes a relatively large volume of fuel 60 to creep along the underside 59 of plate retainer 52 and to accumulate within recess 54, and to be discharged subsequently toward the combustion chamber in the form of a large uncontrolled and un-atomized drip.
In
The director plate sub-assembly second embodiment 251 shown in
c depicts the nozzle end of the injector assembly with plate member 48 and plate retainer 252 assembled into place.
In embodiment 552, ring member 510 having axial opening 520 includes inner flange 556 substantially parallel to outer flange 558 of retainer member 530. Ring member 510 is disposed outside of retainer member 530, and flange 556 protrudes through an opening 540 in member 530.
In retainer assembly 652, ring member 610 is positioned on the outer bottom surface of retainer member 630 and includes a ring member opening 640 coaxial with an opening 660 and an outer flange 658 in retainer member 630. Diameter (d) of opening 640 is less than diameter (d′) of opening 660.
In retainer assembly 752, ring member 710 is positioned on the inner bottom surface of retainer member 730 and includes a first opening 740 coaxial with a second opening 760 in retainer member 730, and outer flange 758. Diameter (d) of opening 740 is less than diameter (d′) of opening 760.
While the embodiments shown in
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
The present application claims priority from U.S. Provisional Patent Application Ser. No. 60/356,791, filed Feb. 14, 2002.
Number | Name | Date | Kind |
---|---|---|---|
RE33841 | Rush et al. | Mar 1992 | E |
5694898 | Pontoppidan et al. | Dec 1997 | A |
5718387 | Awarzamani et al. | Feb 1998 | A |
5823444 | Reiter et al. | Oct 1998 | A |
5862991 | Willke et al. | Jan 1999 | A |
6170763 | Fuchs et al. | Jan 2001 | B1 |
6173914 | Hopf et al. | Jan 2001 | B1 |
6390067 | Haltiner et al. | May 2002 | B1 |
6575382 | Fischer et al. | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030150942 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60356791 | Feb 2002 | US |