The present invention relates to a fuel injector, and more particularly, to a fuel injector including a swirl regulator for regulating an amount of swirl force imparted to injected fuel, using pressure within a fuel passageway.
As shown in
The fuel injector 20 includes a fuel inlet portion 12, a fuel outlet portion 14 and a fuel passageway 16.
If the inner member is rotated, the shape of the fuel passageways changes so that the amount of swirl force imparted to the injected fuel can be regulated.
In such a fuel injector, a rotator such as a motor is needed to rotate the knob. The rotator is disposed outside the fuel injector and is controlled by an electronic control unit (ECU). To control the fuel injector, the fuel injection timing, fuel injection duration, fuel pressure, and an axial position of the inner member need to be controlled. However, these parameters are not considered in general ECU control, and thus to control the fuel injector, the whole ECU control should be changed.
Further, because an intake manifold is disposed near the fuel injector, it is very difficult to dispose a motor proximate to the injector to control the axial position of the inner member. A recent tendency in the intake manifold is to widen its sectional area to minimize the loss of intake flow, and therefore it is much more difficult to secure a space for mounting the motor.
Furthermore, in a gasoline direct injection (GDI) engine, a valve for strengthening tumble or a valve for controlling the amount of swirl force is installed in the intake manifold for obtaining a strong intake flow at a low speed and a low load. Therefore, resistance force against intake air becomes larger than in a multi point injection (MPI) engine because the valve installed in the intake manifold disturbs air flow. For this reason, the sectional area of the intake manifold needs to be widened for better volume efficiency and better maximum torque output. Thus, available empty space near the intake manifold becomes much smaller.
In summary, it is difficult to secure space near the intake manifold and fuel injector for mounting means for regulating the amount of swirl force imparted to the injected fuel, and manufacturing cost becomes larger for an extra drive means and an extra ECU channel.
In a preferred embodiment of the present invention, a fuel injector includes a main body and a swirl regulator disposed in an upper part of the main body. The swirl regulator comprises upper and lower housings, a center shaft, a vane and a resilient member. The upper housing is mounted to the main body and the lower housing includes a center aperture. The center shaft is disposed in the aperture of the lower housing. The vane is supported by the center shaft, and is disposed between a lower part of the upper housing and an upper part of the said lower housing. The resilient member, preferably a spring, is connected to the center shaft such that the center shaft rotates according to fuel pressure.
In a further preferred embodiment, the fuel injector further comprises a body, a seat and a swirl generator and regulator. The body includes an inlet portion, an outlet portion, and a fuel passageway extending from the inlet portion to the outlet portion. The seat is secured in the fuel passageway proximate to the outlet portion. The seat also defines a center aperture. The swirl generator is rotatably disposed in the center aperture of the seat and a plurality of fuel channels are formed between the seat and the swirl generator. The swirl regulator rotates the swirl generator such that the swirl component imparted to injected fuel is regulated. Preferably, the swirl regulator comprises an upper housing mounted to an upper part of the body and a lower housing including a center aperture. The lower housing and the upper housing cooperatively define a plurality of cavities. In addition, a rotating member is formed with a center shaft and a plurality of vanes thereon. The center shaft is rotatably disposed in the center aperture of the lower housing and coupled to the swirl generator. The vanes are disposed in the cavity such that the cavity is divided into at least a first chamber and a second chamber. The first chamber communicates with the fuel passageway and the second chamber communicates with the outside of the injector. A biasing member forces the rotating member to rotate against a force acting on the vane by a pressure difference between the fuel passageway and the outside of the injector.
Preferably, the first chamber communicates with the fuel passageway through a first opening, formed in the lower housing, and the second chamber communicates with the outside of the injector through a second opening, formed in the upper housing. More preferably, the rotating member further comprises a circular head, with the vane mounted on the circular head. The rotating member further comprises a stopper disposed on each side of the vane, and one end of the biasing member is secured to the lower housing and the other end of the biasing member is secured to the circular head. The biasing member is preferably a coil spring with the center shaft of the rotating member passing through the coil spring.
It is preferable that the swirl regulator further comprises a cover coupled to the upper housing. The cover has a fitting member for connection with the body.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention, where:
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
As shown in
A seat 26 is coupled to the body 201 of the fuel injector 200 at an end portion of the fuel passageway 205, the seat 26 being provided with a center aperture. Swirl generator 24 is rotatably inserted into the center aperture of the seat 26. A plurality of fuel channels are formed between the seat 26 and the swirl generator 24. While passing through the fuel channel, the fuel is imparted with a swirl component. By rotating swirl generator 24, the magnitude of the swirl component may be changed.
A swirl regulator 100 according to a preferred embodiment of the present invention is a device that rotates the swirl generator 24 so as to regulate the amount of swirl component. As shown in
The upper housing 110 is provided with a plurality of blocks 113, and in each block 113 a second opening 111 is perforated. In a preferred embodiment of the present invention, there are four blocks. However, the number of blocks is not restricted to four. The second opening 111 communicates with the outside of the fuel injector 10.
The lower housing 120 includes a circular groove 127, and a plurality of fan-shaped grooves 123 are formed along a circumference of the groove 127. The number of grooves 123 is equal to the number of blocks 113, and the positions of the grooves 123 correspond to the positions of the blocks 113. A center aperture 125 is formed at the center of the circular groove 127.
A first opening 121 is perforated in the lower housing 120, which communicates with the fuel passageway 205 as shown in FIG. 2.
If the lower housing 120 is coupled to the upper housing 110, four cavities are formed between the blocks 113 of the upper housing 110 and the grooves 123 of the lower housing 120.
The rotating member 130 includes a downwardly extending center shaft 133, a circular head 135 that is coupled near the top of the center shaft 133, and four vanes 131 integrally formed on the head 135. The head 135 is located in the groove 127 of the lower housing 120, and the center shaft 133 is inserted into the aperture 125 of the lower housing 120. The center shaft 133 is connected to the swirl generator24.
With the upper housing 110, the lower housing 120 and the rotating member 130 joined together as stated above, four separate cavities are formed therebetween. The vanes 131 are respectively disposed in each cavity so that each cavity is divided into two chambers 161 and 162.
The first chamber 161 communicates with the fuel passageway 205 through a first opening 121 that is formed in the lower housing 120, and the second chamber 162 communicates with the outside of the fuel injector 200 through a second opening 111 that is formed in the upper housing 110.
When the fuel passageway 205 is filled with highly pressurized fuel, the pressure in the first chamber 161 becomes larger than that in the second chamber 162. A pressure difference between the two chambers 161 and 162 causes the rotating member 130 to rotate.
The coil spring 140 is disposed between the rotating member 130 and the lower housing 120. One end of the coil spring 140 is connected to the head 135 of the rotating member 130, and the other end of the coil spring 140 is connected to the lower housing 120. The coil spring 140 provides a rotational force to the rotating member 130.
A spring coefficient of the coil spring 140 is determined considering a maximum fuel pressure and a minimum fuel pressure. Thus, a desirable amount of swirl can be obtained under each particular fuel pressure.
The coil spring 140 is arranged such that the rotational force of the coil spring 140 opposes the rotational force caused by the pressure difference between the first chamber 161 and the second chamber 162.
The rotating member 130 further comprises a plurality of stoppers 132 that are coupled on each side of the vane 131 for preventing the vane 131 from blocking the first or second openings. A cylindrical projection 137 is formed on the top of the head 135 of the rotating member 130, and a cylindrical indent 115 is formed in the upper housing 110. The cylindrical projection 137 is rotatably inserted into the cylindrical indent 115 such that the rotating member 130 stably rotates. A circular sealing ring 170 is disposed between the upper housing 110 and the lower housing 120 for sealing.
The swirl regulator 100 further comprises a cover 210 coupled to the top of the upper housing 110. A cavity 220 is formed between the upper housing 110 and the cover 210. The cavity 220 communicates with the second chamber 162 through the second opening 111, and the outside of the fuel injector 10. The cover 210 includes a fitting member, such as one with threads 211, for connection with the body 201 of the fuel injector 200.
To prevent the swirl regulator 100 from rotating, a projection (not shown) is provided in a circumferential surface of the swirl regulator 100, the projection being coupled to a groove (not shown) formed in the body of the injector.
Referring to
If the rotating force of the pressure of the injected fuel is greater than the rotating force of the coil spring, the rotating member 130 rotates in the counter-clockwise direction. On the other hand, if the rotating force of the pressure of the injected fuel is smaller than the rotating force of the coil spring, the rotating member 130 rotates in the clockwise direction. If the rotating member 130 rotates according to change in the pressure of the injected fuel, the swirl generator 24 also rotates so that the swirl component of the injected fuel can be automatically changed.
The fuel injector according to the present invention can improve swirl characteristics, and therefore an engine can be operated under optimal conditions. Further, without an extra ECU control line and an extra swirl controller, the amount of the swirl component can be regulated, and thereby structure of an engine becomes simple and maintainability of an engine can be increased. Although preferred embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many variations and/or modifications of the basic inventive concepts herein taught which may appear to those skilled in the present art will still fall within the sprit and scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-0065252 | Oct 2001 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3937011 | Caruel et al. | Feb 1976 | A |
4015571 | Stumpp | Apr 1977 | A |
4264040 | Saito | Apr 1981 | A |
4827883 | Khalighi et al. | May 1989 | A |
4869429 | Brooks et al. | Sep 1989 | A |
5975433 | Hasegawa et al. | Nov 1999 | A |
Number | Date | Country |
---|---|---|
2000314358 | Nov 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030075619 A1 | Apr 2003 | US |