The invention generally relates to closed-loop temperature control of a heater element in a heated fuel injector, and more particularly relates to communicating a heater enable state and a heater temperature on a single-line data connection at the same time.
It is known that by heating fuel injected into an internal combustion engine during a cold start, particularly fuel comprising alcohol, hydrocarbon (HC) and carbon monoxide (CO) emissions can be reduced. Various arrangements for closed-loop temperature control that use a temperature feedback signal have been proposed. Ground shift errors caused by injector coil current and heater element current make it difficult to accurately determine a temperature feedback signal. One proposed solution is to provide a signal ground wire separate from a power ground wire to provide a Kelvin type connection for the feedback signal to minimize ground shift errors. However, extra wires undesirably increase total system cost. Another proposed solution is to use digital signal communication techniques to avoid the problems caused by ground shift. However, the electronic hardware and associated software necessary for digital data transmission also adds undesirable cost and complexity.
In accordance with one embodiment of this invention, a system for closed-loop temperature control of a heater element thermally coupled to a heated fuel injector is provided. The system has two-way data communication via a single-line data connection. The system includes a voltage source and a variable current sink. The voltage source is configured to output a heater enable signal on the single-line data connection. The heater enable signal has a voltage value indicative of a heater enable state. The variable current sink is configured to draw a current value from the single-line data connection. The current value is indicative of a temperature value related to the heated fuel injector. The indications of the heater enable state and the temperature value are simultaneously present on the single-line data connection.
In another embodiment of the present invention, a heated fuel injector configured for closed-loop temperature control of a heater element thermally coupled to the heated fuel injector is provided. The heated fuel injector has two-way data communication via a single-line data connection. The heated fuel injector includes a voltage detector and a variable current sink. The voltage detector is configured to detect a voltage value on the single-line data connection. The variable current sink is configured to draw a current value from the single-line data connection. The current value is indicative of a temperature value related to the heated fuel injector. The indications of the heater enable state and the temperature value are simultaneously present on the single-line data connection.
In yet another embodiment of the present invention, a heated fuel injector controller for closed-loop temperature control of a heater element thermally coupled to a heated fuel injector is provided. The heated fuel injector controller has two-way data communication via a single-line data connection. The heated fuel injector controller includes a voltage source and a current detector. The voltage source is configured to output a heater enable signal on the single-line data connection. The heater enable signal has a voltage value indicative of a heater enable state. The current detector is configured to detect a current value on the single-line data connection. The current value is indicative of a temperature value. The indications of the heater enable state and the temperature value are simultaneously present on the single-line data connection.
Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
In accordance with an embodiment,
The wavy lines between the heater element 12 and the thermistor 16 may suggest that these devices are thermally coupled to each other. The wavy lines may also be interpreted to suggest that these parts are thermally coupled to the heated fuel injector 14 in general, and in particular, thermally coupled to fuel within or passing through the heated fuel injector 14. U.S. patent application Ser. No. 12/773,251 by Kabasin et al. filed May, 4, 2010 describes a non-limiting example arrangement of a heater element and a thermistor as part of a heated fuel injector assembly, the entire contents of which are hereby incorporated by reference herein. As described in more detail below, the system 10 described herein advantageously has simultaneous two-way data communication between a controller 20 and the heated fuel injector 14 for closed-loop control of a temperature related to the heated fuel injector 14 that is via a single-line data connection 18.
The heated fuel injector 14 may include a coil 22 that generates a magnetic field when current is passed through the coil 22 to mechanically operate a fuel valve (not shown) within the heated fuel injector 14 for dispensing fuel, as is well known in the art. Alternatively, the heated fuel injector 14 may use a piezo-electric device instead of the coil 22 to operate the heated fuel injector 14 in response to a voltage being applied to the piezoelectric device. The system 10 is illustrated as having the coil 22 connected to the controller 20 only for the purpose of presenting an example, and not limitation. It is appreciated that the coil 22 may be connected to a separate injection control module (not shown) or the like for operating the fuel dispensing aspect of the heated fuel injector 14. In either case, the coil 22 may connected to an injector control signal 24 and a ground connection 26, where for example the injector control signal 24 is alternatingly connected to a vehicle battery (B+,
The controller 20 may also provide a power supply connection 28 that supplies a voltage relative to the ground connection 26 for the purpose of providing electrical power to an interface circuit 30. The non-limiting example of
The system 10 may be configured so a heater enable signal 32 is output onto the single-line data connection 18 by the controller 20 to communicate a desired heater enable state (e.g. on-state, off-state) to the interface circuit 30. Also, the system 10 may be configured so a temperature signal 34 is output onto the single-line data connection 18 by the interface circuit 30 to communicate a temperature value to the controller 20. That is, the temperature signal 34 may be interpreted as being indicative of any of: thermistor temperature, heater temperature, injector temperature, fuel temperature, or any other temperature related to the heated fuel injector 14 by compensating the temperature signal 34 for other conditions such as ambient temperature or fuel flow rate. In this way, the controller 20 may be figured to determine whether to apply or interrupt electrical power to the heater element 12 in order to control, for example, the temperature of fuel passing through the heated fuel injector 14 based on a temperature value indicated by the thermistor 16, and so control a temperature in a closed-loop manner using only the single-line data connection 18 for two-way communication.
One way to provide two-way communication over a single wire is to time-multiplex the heater enable signal 32 and the temperature signal 34. The two signals may be analog voltage signals that are time-multiplexed. However, this does not address the ground shift problem described above, and adds undesirable complexity with regard to controlling the timing of the analog signals. Alternatively, the two signals may be digital type signals that are time-multiplexed using known serial communication techniques, and so avoid the ground shift problem, but still add undesirable complexity to the system.
The interface circuit 30 may include a variable current sink 42 configured to draw a variable current value 44 from the single-line data connection 18. In this non-limiting example, the variable current sink 42 may be a voltage controlled current source (VCCS), a number of configurations of which are known in the art.
The system 10 may include a current detector 46 configured to detect the current value 44. The current detector 46 may be a current sensing device such as a Hall effect sensor, or it may be a resistor as suggested by
If the current detector 46 is a Hall effect sensor, then the voltage drop across the current detector 46 is expected to be minimal. However, if the current detector 46 is a resistor, then the value of the resistor can be selected so that the voltage drop is substantial, and so the voltage value 48 on the single-line data connection 18 may be simultaneously indicative of both a heater enable state and the temperature value. That is, the indication of the heater enable state and the indication of the temperature value are both present on the single-line data connection 18 at the same instant in time. This arrangement of a voltage source with a substantial series resistor is sometimes described as a weak voltage source because the voltage value 48 may be substantially influenced by the current value 44. By way of example, and not limitation, assume that the current detector 46 is a 2000 Ohm resistor. Also, assume that the interface circuit is configured so the variable current sink 42 draws zero current when the thermistor 16 indicates a temperature less than 30 degrees Celsius, and draws 0.001 Ampere (1 mA) when a temperature is about 150 degrees Celsius. Also, assume that the current draw of the divide-by-two block 50 is negligible, less than 0.001 mA for example. Then the voltage value 48 will be approximately 5.0 Volts when the thermistor 16 indicates a temperature value less than 30 degrees Celsius and the switch 38 is closed. Alternatively, the voltage value will be approximately 3.0 Volts when the thermistor 16 indicates a temperature value of 150 degrees Celsius.
In order to determine the desired heater enable state, the system 10, or more specifically the interface circuit 30, may include a voltage detector 52 configured to detect the voltage value 48. In this non-limiting example, the combination of the divide-by-two block 50 and the voltage detector 52 comparing the output of the divide-by-two block 50 to a reference voltage value of 1.2 Volts is such that if the voltage value 48 is greater than 2.4 Volts, the heater element 12 will receive electrical energy and so generate heat, unless other conditions described below inhibit or otherwise override the heater enable signal 32. For this example, the heater enable signal 32 is interpreted to indicate that the on-state is desired if the voltage value 48 is greater than 2.4 Volts, and the off-state is desired if the voltage value 48 is less than 2.4 Volts. The voltage at which the heater enable signal 32 transitions from one state to the other may be selected based on how much ground shift is expected, the current range of the variable current sink 42, the value of the voltage source 36, or other signal level concerns that would be recognized by those skilled in the art.
Continuing to refer to
In another embodiment, the over-temperature comparator 56 may be configured to have some hysteresis with regard to the temperature value, and so re-enable the heater element 12 back to the on-state (i.e.—stop overriding the heater enable signal) if the temperature value becomes less than a temperature minimum, for example, 100 degrees Celsius. With this arrangement, as illustrated in
The system 10 may also include a low voltage interrupt (LVI) circuit configured to inhibit heating of the heater element 12 if the voltage on the power supply connection 28 to the interface circuit is less than a threshold, for example less than 5 Volts. Providing such a LVI circuit may be desirable so the heated fuel injector 14 does not draw current from the vehicle electrical system when the voltage of the vehicle electrical system is experiencing low operating voltages, for example when the power supply 28 exhibits a voltage less than 5 Volts.
Accordingly, a system 10 for closed-loop temperature control of a heater element 12 in a heated fuel injector 14, the heated fuel injector 14, and a controller 20 for controlling the heated fuel injector 14 is provided. Controlling the heater element 12 in the heated fuel injector 14 is via a single-line data connection 18 that is a single wire. Indications of the heater enable state in the form of a voltage on the single-line data connection 18 and indications of the temperature value in the form of a current through the single-line data connection 18 are simultaneously present on the single-line data connection 18 at the same instant in time. Furthermore, the system configuration is such that ground shift effect on the accuracy of determining a feedback signal from the heated fuel injector 14 is minimized, where the feedback signal is a temperature value related to the heated fuel injector 14. Because the feedback signal is a current value, the feedback signal is, in general, relatively immune from being influenced by ground shift between the controller 20 and the heated fuel injector 14.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5401935 | Smith et al. | Mar 1995 | A |
5936520 | Luitje et al. | Aug 1999 | A |
5982048 | Fendt et al. | Nov 1999 | A |
6688533 | Nines et al. | Feb 2004 | B2 |
7516733 | Stephan et al. | Apr 2009 | B2 |
7980222 | Stephan et al. | Jul 2011 | B2 |
8439018 | Kabasin et al. | May 2013 | B2 |
20070167086 | Tolli | Jul 2007 | A1 |
20080315934 | Engl | Dec 2008 | A1 |
Entry |
---|
U.S. Appl. No. 12/773,251, Kabasin, et al., filed May 4, 2010. |
Number | Date | Country | |
---|---|---|---|
20120285424 A1 | Nov 2012 | US |