Disclosed embodiments are generally related to fuel injectors for a gas turbine, and, more particularly, to fuel injectors including tandem vanes for injecting alternate fuels, such as may comprise fuels having a different energy density.
Economic considerations have pushed the development of gas turbines capable of using alternate fuels, such as may involve synthetic gases (e.g., syngas) in addition to using fuels, such as natural gas and liquid fuels, e.g., oil. These synthetic gases typically result from gasification processes of solid feedstock such as coal, pet coke or biomass. These processes may result in fuels having substantially different fuel properties, such as composition, heating value and density, including relatively high hydrogen content and gas streams with a significant variation in Wobbe index (WI). The Wobbe index is generally used to compare the combustion energy output of fuels comprising different compositions. For example, if two fuels have identical Wobbe indices, under approximately identical operational conditions, such as pressure and valve settings, the energy output will be practically identical.
Use of fuels having different fuel properties can pose various challenges. For example, as the heating value of the fuel drops, a larger flow area would be required to deliver and inject the fuel into the turbine and provide the same heating value. Thus, it is known to construct different passages for the injector flow to accommodate the Wobbe index variation in the fuels. Another challenge is that fuels having a high hydrogen content can result in a relatively high flame speed compared to natural gas, and the resulting high flame speed can lead to flashback in the combustor of the turbine engine. See U.S. Pat. Nos. 8,661,779 and 8,511,087 as examples of prior art fuel injectors involving vanes using a traditional jet in cross-flow for injection of alternate fuels in a gas turbine.
The inventors of the present invention have recognized certain issues that can arise in the context of certain prior art fuel injectors that may involve tandem vanes for injecting alternate fuels in a gas turbine. For example, some known fuel injector designs involve tandem vanes using a jet in cross-flow injection to obtain a well-mixed fuel/air stream into the combustor of the turbine engine. However, such designs may exhibit a tendency to flashback, particularly in the context of fuels with high hydrogen content. In view of such recognition, the present inventors propose a novel fuel injector arrangement where fuel is injected without jet in cross-flow injection, such as in the direction of the air flow intake in lieu of the traditional jet in cross-flow injection.
In the following detailed description, various specific details are set forth in order to provide a thorough understanding of such embodiments. However, those skilled in the art will understand that embodiments of the present invention may be practiced without these specific details, that the present invention is not limited to the depicted embodiments, and that the present invention may be practiced in a variety of alternative embodiments. In other instances, methods, procedures, and components, which would be well-understood by one skilled in the art have not been described in detail to avoid unnecessary and burdensome explanation.
Furthermore, various operations may be described as multiple discrete steps performed in a manner that is helpful for understanding embodiments of the present invention. However, the order of description should not be construed as to imply that these operations need be performed in the order they are presented, nor that they are even order dependent, unless otherwise indicated. Moreover, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. It is noted that disclosed embodiments need not be construed as mutually exclusive embodiments, since aspects of such disclosed embodiments may be appropriately combined by one skilled in the art depending on the needs of a given application.
The terms “comprising”, “including”, “having”, and the like, as used in the present application, are intended to be synonymous unless otherwise indicated. Lastly, as used herein, the phrases “configured to” or “arranged to” embrace the concept that the feature preceding the phrases “configured to” or “arranged to” is intentionally and specifically designed or made to act or function in a specific way and should not be construed to mean that the feature just has a capability or suitability to act or function in the specified way, unless so indicated.
In one non-limiting embodiment, fuel delivery tube structure 12 may comprise coaxially disposed inner 13 and outer tubes 15, where inner tube 13 comprises the second fuel supply channel 20, and where the first fuel supply channel 18 is annularly disposed between inner and outer tubes 13, 15.
As can be also appreciated in
A second set of vanes 32 may be disposed downstream relative to the first set of vanes 22. The second set of vanes 32 may also be arranged between fuel delivery tube structure 12 and shroud 16. That is, the first and second set of vanes 22, 32 may be conceptualized as a tandem arrangement of vanes. A radial passage 34 may be constructed in each vane 32. Once again, for simplicity of illustration, radial passage 34 is illustrated just in one of the vanes 32. In this case, radial passage 34 is in fluid communication with second fuel supply channel 20 to receive a second fuel. In one non-limiting embodiment, radial passage 34 may be configured to branch into a set of passages 36 (e.g., axial passages) each having an aperture 38 arranged to inject the second fuel not in a jet in cross-flow mode, such as in the direction of air flow. The first fuel and the second fuel may comprise alternate fuels having a different energy density. For example, without limitation, the first fuel that flows in first fuel supply channel 18 may comprise syngas, and the second fuel that flows in second fuel supply channel 20 may comprise natural gas.
The foregoing arrangement (without jet in cross-flow injection) is believed to substantially reduce flashback tendencies generally encountered in the context of fuels with high hydrogen content. As may be appreciated in
While embodiments of the present disclosure have been disclosed in exemplary forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and its equivalents, as set forth in the following claims.
Development for this invention was supported in part by Contract No. DE-FC26-05NT42644, awarded by the United States Department of Energy. Accordingly, the United States Government may have certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/013523 | 1/29/2015 | WO | 00 |