The field of this invention relates generally to a fuel injector assembly for an internal combustion engine and more particularly to a fuel injector having dual piezo-electric actuators.
Fuel injector assemblies are often utilized in internal combustion engines for delivering a metered measure of fuel to the combustion chamber. The injected fuel mixes with air within the chamber for combustion. Precise metering and timing of the fuel injection provides for better combustion, thus better horsepower, fuel economy and performance. In addition precise control of the fuel injection has also been known to improve emission performance.
Piezo-electric material provides for a rapid response when a voltage is applied to the material. When piezo-electric material is incorporated in a control actuator of a Diesel fuel injector it is faster and more responsive than solenoid actuated or mechanically actuated valves. Furthermore, the rate of injection can be modulated by varying the voltage applied to the piezo-electric actuator.
Precise fuel injection is often difficult to achieve because many fuel injectors' performance is dependent on the speed and load of the engine. Secondly, many fuel injection devices rely on the pressure within a common rail which has a relatively large volume and provides a relatively constant pressure. A common rail, due to its relatively large volume, is relative slow to respond to any desired changes of pressure for sequential cycles of the fuel injector.
On the other hand, fuel injectors which use a cam or rocker arm to actuate a fuel injection piston in an individual injector have the fuel pressure and rate of injection quickly responsive to changes in conditions. However, the valve's injection rate of delivery is highly dependent on the engine speed. To eliminate the dependence on the engine speed, a fuel injector may have the opening and closing of an independent pressure control actuator controlled by a solenoid or a more responsive piezo-electric device connected to an electronic EUI controller.
One way to lower NOx emissions and meet stricter emission requirements is to regulate the rate of fuel injection and/or multiple injections such as a controlled pilot injection followed by a main injection. Previous injectors allow a pilot injection but only at the expense of the initial pressure and the fuel injection rate and quantity of the main injection. In addition, the injection rate with respect to time is naturally sloped having a relatively linear build-up from a low initial rate to a high rate near the end of injection. Attempts have been made to contour the injection rates by using injector cams with high velocity profiles but these specialized cams may provide only limited effect due to mechanical design constraints. It has also been proposed to provide a post injection after main injection, to reduce particulate emissions.
What is needed is a fuel injector that provides highly controlled fuel injection rates independent of engine speed and also responsive enough to provide a pilot injection phase and a post injection phase without degradation of the main injection phase.
In accordance with one aspect of the invention, a fuel injection assembly includes an injection body with a fuel supply passage and a main high pressure fuel supply cavity. A plunger is disposed within the injector body for displacing fuel from the fuel supply cavity. The supply cavity has a first outlet passage leading from said cavity and in selective fluid communication with a low pressure return. A normally open first actuator valve is in the first outlet to open or close a connection of the first outlet to the low pressure return. Preferably, the first actuator valve has a piezo-electric stack and a hydraulic amplifier for elongating the stroke of the control valve with respect to the amount of elongation of the piezo-electric stack. Preferably, the first piezo-electric stack is mounted adjacent the main high pressure fuel supply cavity.
A second passage leads from the main high pressure supply cavity to an injector nozzle valve. The nozzle valve injects fuel into a combustion chamber of an internal combustion engine. The nozzle valve is constructed to be opened by fluid pressure exerted from the second passage onto the nozzle valve in the opening direction. A restrictive passage leads from the second passage to a chamber at the backside of the nozzle valve for exerting opposing fluid pressure on the nozzle valve to close the nozzle valve against the opening fluid pressure exerted on the nozzle valve. A third passage leads from the chamber to the low pressure return. A normally closed second actuator valve is constructed to open or close fluid communication between the chamber and the low pressure return via the third passage.
Preferably the second actuating valve is opened and closed by a second piezo-electric stack mounted closely above the needle nozzle valve and desirably coaxially along the longitudinal central axis of said injection body. The piezo-electric stack when incorporated into an actuating valve can be referred to as a piezo-electric actuator.
In one embodiment, the restrictive passage leading to the chamber is more restrictive than the third passage. This restriction prevents pressure build up in the chamber when the second control valve is open, i.e., any pressure leading through the restriction is immediately relieved by the chamber and third passage opening to the low pressure return. In one embodiment, the piezo-electric stacks are controlled by a variable voltage source.
According to another aspect of the invention, a method of fuel injection into an internal combustion engine includes providing a fuel injector body with a main supply cavity and controlling fluid communication of the supply cavity to a low pressure spill port by a first pressure control valve and controlling fluid communication of the main supply cavity through a nozzle valve to the combustion chamber with a second control valve. Pressure within the main supply cavity, preferably by a moving plunger, is built up when the first pressure control valve is closed. Opening of the second control valve after the pressure is built up within the main supply cavity causes the nozzle valve to open to the combustion chamber to provide fuel injection.
Desirably, a pressure chamber on a backside of the nozzle valve is pressurized to close the nozzle valve when both of the first and second control valves are closed. Upon opening of the second control valve, the chamber pressure is lowered to open the nozzle valve to the combustion chamber and providing injection of fuel from the main supply cavity from within the fuel injector. It is desirable to apply a voltage to first and second piezo-electric stacks in the first and second control valves for controlling the respective fluid communication of the supply cavity and second control valve to the low pressure return. It is further desirable to apply controlled and variable voltage or charge to the piezo-electric stacks to control and modulate the sealing force and degree of opening of the control valve in order to affect injection rate shaping.
In this fashion, a fuel injection device for an internal combustion engine such as a Diesel engine can with precision, control pressure and initial fuel injection rates and can provide for pilot injection, main injection and post injection by using two piezo-electric actuators for each injector. Such precise control of injection rates provides better control between sequential cycles and reduced transient emissions.
Reference now is made to the accompanying drawings in which:
Referring now to
The first control actuator 20 selectively opens or closes communication of passages 18 and 22 to a low pressure spill way 32. Similarly, second control valve 30 selectively communicates chamber 28 to low pressure spill way 32. Each control valve 20 and 30 is operably connected to an electronic control unit (EUI) 33 capable of providing variable voltage supply.
Referring now to
The main supply cavity 16 is fluidly connected to a first passage 18 which leads to control valve 20. Control valve 20 has a piezo-electric stack 34 which slidably moves a spring biased valve piston 36 by coil spring 37. The piston 36 is hydraulically linked to a smaller area valve piston 38 through linking passage 39. The fluid chamber under piston 36 can be either hermetically sealed or re-supplied from spill passage 46 via a check valve, with appropriate de-aeration mechanism. Valve piston 38 is also spring biased upward to the open position by coil spring 40. The area of piston 36 is five to twenty times the size of area of piston 38 to provide hydraulic amplification to piston 38 which sufficiently amplifies longitudinal movement for opening and closing with respect to port 44 that opens or closes passage 18 to spill passage 46. Spill passage 46 leads to the low passage spillway 32. The spring bias provides that the valve port 44 is normally open when the piezo-electric stack 34 is not actuated. Valve port 44 is closed when the piezo-electric stack 34 is actuated. The piezo-electric stack 34 is generally aligned along the longitudinal axis 47 of the first control valve 20 which in turn is mounted onto body 11.
The second passage 22 extends from the main supply cavity 16 down to nozzle valve annular chamber 50 about tapered needle nozzle valve 24. The pressure in chamber 50 by acting on tapered section 51 of needle nozzle valve 24 normally provides an opening force on the nozzle valve 24 to exit through discharge port 52 into the combustion chamber shown in
In addition a control piston 60 is coaxially mounted through coil spring 54 to also engage the needle nozzle valve 24. As shown in
Chamber 28 is normally at the same pressure as chamber 50. Both chamber 28 and 50 are in constant communication to the same passage 22. The second control valve 30 when unactuated is normally closed to shut an exit orifice 62 leading from chamber 28 to a low pressure outlet 64 that leads back to spill way 32.
A piezo-electric stack 74 mounted along the longitudinal axis 48 of the injector body 11 abuts the upper end 75 of valve member 66. When the piezo-electric stack 74 is actuated via controller 33, it moves valve 66 to an open position as shown in
When the piezo-electric stack 74 is deactuated the valve 66 moves to the closed position due to the closing bias of spring 70. Pressure in chamber 28 then is increased to line pressure in passage 22. Needle nozzle valve 24 then closes.
The volume in chamber 28 and exit orifice 62 are small which provides very little delay in the pressure discharge when chamber 28 is opened to spill way 32. Similarly, when the control valve 30 closes, the small size of chamber 28 and exit orifice 62 provide very little delay to become pressurized through the restrictive passage 26.
The first and second control valves 20 and 30 are timed such that they together provide a superior discharge profile through nozzle discharge port 52. A typical graph profile shown in
On the other hand, with the present invention, the pressure control valve 20 can be actuated a predetermined time before the second control valve 30 is actuated and opening the nozzle valve. As such the pressure builds up to point Po at which time the second control valve is actuated. After a predetermined lapse of time Δt, the second control valve 30 is the actuated to commence the injection. The resulting injection rate undergoes a fast initial build up as shown in the last graph in
Hydraulic simulations have obtained results as shown in
The use of a piezo-electric actuator provides for a responsive valve.
The injection body 11 may optionally be provided with a waste gate safety valve connected to passage 22 to assure that pressure in the supply cavity or passageway 22 never exceeds a predetermined maximum. The optional wastegate valve opens to the spill way 32 when the pressure in the passageway 22 exceeds a predetermined maximum pressure and closes again when the pressure drops below the predetermined maximum pressure. However, it is believed that precise control can be achieved with the two control valves 20 and 30 in a reliable fashion to control the pressure within the supply cavity 16 and passage 22 without the need for a wastegate valve.
In this fashion, one can provide for a quick response injector with a controlled initial injection rate. The injector can be electronically modified with each cycle without large hydraulic delays due to a common rail pressure or large hydraulic delays within the injector body.
Two control valves are both actuated through piezo-electric stacks which are quickly responsive to electronic voltage supply signal and can be modulated in its actuation mode through variable or modulated voltage through the supply 33. The two piezo-electric stacks are canted with respect to each other for easy packaging within the engine.
Dual and triple injection cycles are possible without degradation of the injection rate of the main phase of the injection. Injection rates are also independent of the RPM or torque load of the engine. The injection device is also quickly responsive to help reduce transient emissions during change of speed, torque or other parameters of the engine. The responsiveness is quick enough to adjust between sequential injection cycles of the injector 10. The piezo-electric stacks may be modulated through a variable voltage to provide more control of the control valves 20 and 30.
Other variations and modifications are possible without departing from the scope and spirit of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3501099 | Benson | Mar 1970 | A |
4197997 | Wu et al. | Apr 1980 | A |
4373671 | Giardini | Feb 1983 | A |
4899714 | Schechter et al. | Feb 1990 | A |
6196199 | Jiang | Mar 2001 | B1 |
6227175 | Jiang et al. | May 2001 | B1 |
6247450 | Jiang | Jun 2001 | B1 |
6302333 | Hoffmann et al. | Oct 2001 | B1 |
6345771 | Gromek et al. | Feb 2002 | B1 |
6390069 | Jiang et al. | May 2002 | B1 |
6460779 | Boecking | Oct 2002 | B1 |
6684854 | Coldren et al. | Feb 2004 | B2 |
7252249 | Molnar | Aug 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20080011274 A1 | Jan 2008 | US |