The present invention relates to a fuel injector.
The present invention is advantageously applied to an electromagnetic injector, to which explicit reference will be made in the following description without therefore loosing in generality.
A fuel injector comprises a cylindrical tubular accommodation body having a central feeding channel, which serves as fuel pipe and ends with an injection nozzle adjusted by an injection valve controlled by an electromagnetic actuator. The injection valve is provided with a needle, which is rigidly connected to a mobile keeper of the electromagnetic actuator to be displaced by the action of the electromagnetic actuator between a closing position and an opening position of the injection nozzle against the bias of a closing spring which tends to maintain the needle in the closing position. The needle ends with a shutting head, which in the closing position is pushed by the closing spring against the valve seat of the injection valve to prevent the fuel from leaking.
The closing position of the needle is defined by the contact of the shutting head against the valve seat of the injection valve, i.e. the contact of the shutting head against the valve seat of the injection valve constitutes a lower end stroke of the needle. The opening position of the needle is defined by the contact between a portion of the needle and a catch element which constitutes an upper end stroke of the needle.
When the injector is driven to inject the fuel, the needle is displaced from the closing position to the opening position thus performing an opening stroke; at the end of the opening stroke, the needle collides into the catch element which constitutes the upper end stroke; following this collision, the needle rebounds and thus collides into the catch element again at slower speed rebounding again and so on. In other words, a damped oscillatory motion is established which after a few cycles leads the needle to arrange immobile in contact with the catch element which constitutes the upper end stroke.
The above-described rebound of the needle against the catch element which constitutes the upper end stroke does not essentially cause any negative consequence when the injector is maintained open for a relatively long injection time (i.e. for an injection time longer than the time needed for the oscillatory behaviour triggered by the rebound to be exhausted), because when the needle is returned to the closing position, the oscillatory behaviour triggered by the rebound is by then exhausted. Instead, the above-described rebounding phenomenon of the needle against the catch element which constitutes the upper end stroke introduces a high uncertainty in the amount of injected fuel when the injector is maintained open for a short injection time (i.e. for an injection time shorter than the time needed for the oscillatory behaviour triggered by the rebound to be exhausted), because when the needle is returned to the closing position the oscillatory behaviour triggered by the rebound has not yet been exhausted.
During the oscillatory behaviour triggered by the rebound, the needle may have either a positive speed (i.e. may be displaced towards the opening position thus moving away from the closing position) of variable value or may have a negative speed (i.e. may be displaced towards the closing position thus moving away from the opening position) of variable value. When the closing command is imparted during the oscillatory behaviour triggered by the rebound, the needle may have either a positive speed which opposes to the closing or a negative speed which promotes the closing in an uncertain manner (i.e. not predictable a priori); in both cases, the closing times are considerably different and thus the opening time of the needle being equal, the amount of fuel which is injected may randomly vary in a manner not predictable a priori.
It is worth emphasizing that the oscillatory behaviour triggered by the rebound is affected by various factors which are difficult to predict and however displays a certain randomness; consequently, the oscillatory behaviour triggered by the rebound is essentially uncertain and thus can neither be accurately predicted a priori nor compensated a posteriori, e.g. by compensating the injection times.
As previously described, by effect of the oscillatory behaviour triggered by the rebound, for short injection times, the amount of fuel which is injected may randomly vary in a manner not predictable a priori; consequently, for short injection times, the injection time/injected fuel amount feature displays a pronounced lack of linearity and a high randomness (i.e. lack of repeatability). Such lack of linearity and of repeatability for short injection times is particularly harmful in modern internal combustion engines, in which a punctual and very accurate torque control is required in order to effectively perform vehicle traction and stability controls.
It is the object of the present invention to make a fuel injector which is free from the above-described drawbacks and is specifically easy and cost-effective to manufacture.
According to the present invention, a fuel injector is made as set forth in the attached claims.
The present invention will now be described with reference to the accompanying drawings, which illustrate some non-limitative embodiments thereof, in which:
In
Preferably, the supporting body 4 consists of an upper portion 4b accommodating the electromagnetic actuator 6 and a lower portion 4a accommodating the injection valve 7 which are joined together by welding.
The electromagnetic actuator 6 comprises an electromagnet 8, which is accommodated in a fixed position within the supporting body 4 and when energized displaces a ferromagnetic material mobile keeper 9 along axis 2 from a closing position to an opening position of the injection valve 7 against the bias of a closing spring 10 which tends to maintain the mobile keeper 9 in the closing position of the injection valve 7. The mobile keeper 9 has a central axial through hole 11 (i.e. parallel to the longitudinal axis 2) to allow the flow of fuel towards the injection nozzle 3. The electromagnet 8 further comprises a coil 12 which is electrically supplied by an electronic control unit (not shown) by means of an electric wire 13 and a fixed magnetic yoke 14, which is accommodated inside the supporting body 4 and has a central axial through hole 15 (i.e. parallel to the longitudinal axis 2) for allowing the fuel flow towards the injection nozzle 3.
The mobile keeper 9 is a part of a mobile element 16, which further comprises a shutter or needle 17, having an upper portion integral with the mobile keeper 9 and a lower portion cooperating with a valve seat 18 of the injection valve 7 to adjust the fuel flow through the injection nozzle 3 in a known manner. The needle 17 is crossed by a feeding hole 19, which has an upper axial inlet and four lower inclined outlets (only three of which are shown in
The needle 17 ends with a shutting head 20, which is adapted to tightly rest against the valve seat 18, displaying a shape which negatively reproduces the shape of shutting head 20 itself. Downstream of the valve seat 18 there is obtained a semi-spherical injection chamber 21, which is crossed by at least one through hole which defines the injection nozzle 3 and is formed by a plate 22 which is welded to the supporting body 4.
The mobile keeper 9 of the electromagnet 8 is ring-shaped and has a smaller diameter than the internal diameter of the corresponding portion of the feeding channel 5 of the supporting body 4, and consequently the mobile keeper 9 cannot even serve as upper guide of the needle 17. According to the embodiment shown in
As shown in
Furthermore, the injector 1 comprises a mechanical damping device 26, which is adapted to generate on the needle 17 an elastic force which opposes to the movement of the needle 17 towards the opening position when the needle 17 is in proximity of the catch element 25. The mechanical damping device 26 comprises an elastic leaf spring body 27, which is interposed between the catch element 25 and the needle 17 so that in its opening movement the needle 17 does not violently collide into the catch element 25 which is a rigid body, but is progressively slowed down until it stops by effect of an elastic force which opposes to the movement of the needle 17 towards the opening position, and progressively increases (i.e. the nearer the needle 17 gets the catch element 25, the greater this elastic force is) until it completely balances the force exerted on the needle 17 by the actuator 6. The elastic force which acts on the needle is generated by the elastic body 27 which is progressively deformed under the bias of the needle 17. It is worth underlining that the elastic force generated by the deformation of the elastic body 27 must balance both the force exerted on the needle 17 by the actuator 6, and the inertia (i.e. deriving from the kinetic energy) of the needle 17 by effect of the movement towards the opening position.
According to the preferred embodiment shown in
The elastic body 27 is ring-shaped and may be either closed (i.e. seamless), if the elastic body 27 is inserted axially about the needle 17, or open (i.e. with an opening) if the elastic body 27 is mounted transversally about the needle 17 (in this case, the elastic body 27 is temporarily deformed to spread the opening and allow the passage of the needle 17 through the spread opening).
Preferably, the elastic body 27 consists of a plurality of thin foils 29 sandwiched onto each other and enclosed between two thicker retaining rings 30. As shown in
According to the embodiment shown in the accompanying figures, in the closing position the needle 17 (specifically the plate 28 integral with the needle 17) is detached from the elastic body 27; therefore, the needle 17 (specifically, the plate 28 integral with the needle 17) comes into contact with the elastic body 27 only during the final step of the opening movement. According to a different embodiment (not shown), in the closing position the needle 17 (specifically the plate 28 integral with the needle 17) rests on the elastic body 27; therefore the needle 17 (specifically the plate 28 integral with the needle 17) is always in contact with the elastic body 27. In the latter case, in the closing position, the elastic body 27 could also be pre-loaded, i.e. could generate a non-zero elastic force on the needle (17).
The pliability curve of the elastic body 27 could be linear (i.e. the linear force generated by the elastic body 27 is directly proportional to the axial deformation of the elastic body 27 itself). However, according to a preferred embodiment, the pliability curve of the elastic body 27 is non-linear and increases more than proportionally as the axial deformation of the elastic body 27 increases; specifically, the pliability curve of the elastic body 27 increases in a parabolic quadratic or cubic manner (i.e. the elastic force generated by the elastic body 27 is proportional to either the square or cube of the axial deformation of the elastic body 27 itself). In this manner, the needle 17 may be displaced more rapidly towards the opening position and be slowed down in a more clean manner only in proximity of the opening position (indicatively during the last third of the opening stroke).
Preferably, an axial dimension (i.e. along the longitudinal axis 2) of the gap existing between the mobile keeper 9 and the fixed magnetic yoke 14 is such so as to be always higher than the length of the stroke of the needle 17 limited by the catch element 25 (with the interposition of the elastic body 27) to guarantee that the length of the stroke is determined by the catch element 25 and not by the abutment of the mobile keeper 9 against the fixed magnetic yoke 14. From the above, it is apparent that the gap existing between the mobile keeper 9 and the fixed magnetic yoke 14 is never cancelled (therefore avoiding magnetic sticking phenomena between the mobile keeper 9 and the magnetic yoke 14), because the mobile keeper 9 never comes into contact with the fixed magnetic yoke 14; obviously, during the step of designing the electromagnet 8, the influence of the gap which has a larger dimension than that of a traditional electromagnetic injector must be taken into account.
In use, when the electromagnet 8 is not energized, the mobile keeper 9 is not attracted by the fixed magnetic yoke 14 and the elastic force of the closing spring 10 pushes the mobile keeper 9 along with the needle 17 downwards so as to keep the needle 17 in the closing position; in this situation, the shutting head 20 of the needle 17 is pressed against the valve seat 18 of the injection valve 7, preventing the fuel from leaking. When the electromagnet 8 is energized, the mobile keeper 9 is magnetically attracted by the fixed magnetic yoke 14 against the elastic force of the closing spring 10 and the mobile keeper 9 along with the needle 17 is displaced upwards until the movement of the needle 17 is stopped in the opening position by the combined action of the catch element 26 and of the mechanical damping device 26; in this situation, the mobile keeper 9 is separated from the fixed magnetic yoke 14, the shutting head 20 of the needle 17 is lifted with respect to the valve seat 18 of the injection valve 7, and the pressurized fuel may flow through the injection nozzle 3.
In virtue of the action of the mechanical damping device 26, the needle 17 at the end of the opening stroke does not violently collide into the catch element 25, but gradually and smoothly stops by effect of the increasing elastic force generated by the deformation of the elastic body 27; in this manner, the needle 17 is not subjected to any type of rebound or, however, is subjected to a very small and thus essentially negligible rebound. Consequently, no oscillatory behaviour is triggered by a rebound and also for short injection times the amount of fuel which is injected is directly proportional to the injection time (i.e. to the opening time of the injector 1) without random variations which are not predictable a priori. Therefore, also for short injection times, the injection time/injected fuel amount feature displays a high linearity and a high repeatability.
Furthermore, the absence of a significant collision between the needle 17 (specifically between the plate 28 integral with the needle 17) and the catch element 25 reduces the mechanical wear of the two components themselves and does not require the external surfaces of such components to be treated to increase their mechanical resistance. Consequently, the above-described injector 1 has a particularly long working life, has shorter settling times (i.e. run-in times for stabilizing its features) and is also cost-effective to manufacture.
Number | Date | Country | Kind |
---|---|---|---|
07425755.1 | Nov 2007 | EP | regional |