The present invention relates to the field of fuel injectors. In particular, the present invention relates to an improved fuel injector where the injector needle is controlled by an external command, e.g. a solenoid.
A known fuel injector is shown in
Turning to
Within the injector body 3 is provided a fuel supply passage 7 which receives fuel under high pressure from a high pressure fuel pump 9. The pump is supplied by a fuel reservoir 11.
Also located within the injector body 3 is a solenoid, of which the bobbin 13 (windings of the solenoid) is shown in
A backleak return path 17 is also provided within the injector body 3 through which fuel at low pressure may pass, in use, as described below in relation to
It is noted that the main longitudinal axis 19 of the injector nozzle 5 (and injector body 3) is offset from the longitudinal axis 21 of the solenoid in this fuel injector 1, the offset being referred to as the “Lift” in
It is noted that the injector nozzle 5 is held on the end of the injector body by virtue of a compressive load applied by a capnut 25.
a to 2e show the working principle of the injector 1 of
In the position shown in
High pressure fuel also flows through a valve 33 into a spring chamber 35 above the needle 27. The fuel in this chamber therefore exerts a downwards force on the needle. Also within the chamber is a spring 37 which acts to urge the needle in a downward direction towards the seated position.
A control valve 39 is located above the spring chamber 35 and below the solenoid 41. In
In
The pressure within the spring chamber 35 drops further as fuel spills down the backleak path 17 to the low pressure reservoir until in
In
In the arrangement of
It is noted that increasing the volume of the high pressure fuel line would aid in optimizing the operation of the injector. It is therefore an object of the present invention to provide a fuel injector having a high pressure fuel line with a greater volume than known fuel injectors.
In the example of
According to a first aspect of the present invention there is provided a fuel injector for an internal combustion engine, the fuel injector comprising: an injector body of substantially elongate form and defining an injector body axis; an injector nozzle disposed at one end of the injector body; and a plurality of element connector means for providing fluid and/or electrical connection into and/or out of the fuel injector wherein at least some of the element connector means are arranged to be rotatable relative to one another about the injector body axis.
As noted above, known fuel injector arrangements are limited since the orientation of the various components is fixed. However, in the present invention the fuel injector comprises a plurality of element connector means (e.g. a high pressure inlet, low pressure outlet, electrical connection point), at least some of which are arranged to be rotatable relative to one another about the injector body axis. In this manner the connection points into the fuel injector (e.g. fuel inlets and outlets and electrical connection points) can be moved relative to one another thereby allowing the injector to be re-configured.
Conveniently, the element connector means may comprise a high pressure inlet (to supply high pressure fuel to a high pressure fuel supply passage and a low pressure outlet (to allow fuel returning from a backleak return fuel path to be removed from the injector), the inlet and outlet being rotatable relative to one another.
Conveniently, the plurality of element connector means may comprise at least one fuel related element connector means (e.g. a fuel inlet or a fuel outlet) that is rotatable about the injector body axis.
Conveniently, all of the element connector means may be rotatable about the injector body axis.
The fuel injector may further comprise a plurality of elements (e.g. internal electrical and hydraulic components and features such as electrical connections, fuel supply passages and fuel backleak returns) located at least in part within the injector body, each of the plurality of elements being in communication with an element connector means (e.g. a high pressure inlet, low pressure outlet, electrical connection point).
Elements (or “injector elements”) may be located either entirely within the injector body or alternatively may be located in part within the injector body. For example, a backleak return fuel path may run from the injector nozzle through the inside of the injector body to a component such as an end cap which is located at the end of the injector body opposite to the injector nozzle. In this example, a low pressure fuel outlet may be formed in the surface of the end cap arrangement such that the outlet is in communication with the injector nozzle via the backleak return path which runs partially through the end cap arrangement and partially within the injector body. The injector element in this example may therefore be regarded as located at least in part within the injector body. In an alternative example a fuel supply passage may be located entirely within the injector body such that at one end it is in communication with the injector nozzle and at the other end it is in communication with a high pressure inlet which is a separate component to the injector body.
It is noted that more than one element may be in communication with the same element connector means. For example, an actuator arrangement would be in communication with an electrical connection point via electrical connections within the fuel injector.
Conveniently in order to allow the element connector means to be rotated relative to one another the elements may be distributed axially about the injector body axis. Conveniently, one of the elements may be distributed along the injector body axis.
Preferably, one of the elements is a fuel supply passage which may conveniently be annularly arranged about the injector body axis. In this example, the present invention therefore provides a fuel injector in which the fuel supply passage arrangement is axially distributed around the main axis (the longitudinal axis) of the injector body. The fuel supply passage arrangement may comprise an annular space around the axis or alternatively may comprise a plurality of fuel pathways arranged about the main axis. It is noted that the term “fuel supply passage arrangement” is regarded as equivalent in the following description to the terms “fuel supply line”, “fuel supply pathway” or “fuel supply passage”.
An axial configuration for the fuel injector enables a larger volume of fuel supply pathway to be provided within a given fuel injector. Conveniently, any elements within the injector, e.g. control actuator for the injector nozzle, fuel backleak pathways, electrical connections etc., may be located such that they are enclosed by the high pressure fuel pathway.
It has been found that the axial fuel injector configuration according to embodiments of the present invention significantly increases the volume of the high pressure fuel supply line. For example, taking the known fuel injector as described with reference to
Such an increase in volume of the high pressure fuel supply line has a number of advantages. For example, the increase in volume within the injector can improve the injection rate that is achievable from the injector. The capability of the injector to handle multiple injections may also be improved.
In a common rail system, the ability to increase the volume of the high pressure supply line may also enable the volume of the common rail to be reduced. In some cases, it may even be possible to remove the rail entirely since the high pressure volume can effectively be located within the fuel injector itself. This may offer significant benefits in the ability to design and arrange an engine system.
A further advantage of an increased volume fuel supply line in accordance with embodiments of the present invention is the ability to install features within the injector to reduce the effect of pressure waves within the fuel pathways.
Further preferred features and advantages to the present invention are described below.
The fuel injector may conveniently further comprise a needle member which is engageable with a needle seating to control fuel delivery from the injector nozzle and an actuator arrangement to control movement of the needle member, wherein the actuator arrangement and injector body define a common axis. Conveniently, in such a configuration the fuel supply passage arrangement may surround the actuator arrangement.
Conveniently, the fuel supply passage arrangement may be arranged to extend parallel to the main axis of the injector body.
Preferably, the fuel supply passage arrangement may be arranged to completely encircle the injector axis. The cross section of the fuel supply passage arrangement may take any convenient configuration but conveniently, it forms an annular sheath within the body of the injector (i.e. an annular space is defined within the injector body for the supply of fuel in use to the injector nozzle).
Where the fuel supply passage arrangement defines such an annular space within the injector body then preferably the fuel supply passage arrangement may be located within the injector body in such a manner that its axis is common with that of the injector body.
It is noted that the axial arrangement of the fuel passage allows components to be mounted on a common axis with the injector body. Depending on the arrangement of components within the injector body this may provide the advantage that forces acting on the injector body are reduced compared to prior art arrangements.
Conveniently, the elements may be arranged such that one element is arranged along the injector body axis with the remaining elements being annularly arranged about the injector body axis such that they are concentrically mounted with respect to one another.
It is further noted that mounting elements of the injector along or about the injector axis has the benefit that the orientation of inlet and outlet orifices to these elements may be orientated at any convenient angle about the main injector axis. In prior art injectors, the asymmetric nature of the injector elements may lead to restrictions on the placement of the associated inlet or outlets. In embodiments of the present invention by contrast, the elements may be loaded down the injector from an opening in the top and may essentially be concentrically mounted so that the associated inlet or outlets can be rotated to any desired orientation. This has benefits in engine design as there is flexibility in the arrangement of the injector. It may also benefit the angular location of the injector nozzle holes by reducing the tolerance stack up.
The internal elements of the fuel injector may also further comprise a backleak return fuel path arranged in use to return fuel from the hydraulic command/injector nozzle to a fuel reservoir; an electrically controlled actuator arrangement for controlling fuel supply through the injector nozzle; and electrical connections arranged to connect the actuator arrangement to a control unit wherein the backleak return path, actuator arrangement and electrical connections may be arranged either parallel to or along the injector body axis.
Conveniently, the fuel supply passage may be associated with a high pressure fuel inlet, the backleak return path may be associated with a low pressure fuel outlet and the electrical connections may be associated with an electrical connection point. The fuel supply passage arrangement may in such an injector be arranged to surround the backleak return path, actuator arrangement and electrical connections. The elements may be mounted concentrically relative to one another.
It is noted that the high pressure inlet may conveniently be integrally formed with the injector body. Such an arrangement has the advantage of simplifying the sealing function at the high pressure inlet.
Conveniently, the injector body may define a bore, the bore having an open first end and a partially closed second end, the second end comprising an opening through which the injector nozzle projects.
Conveniently, one of the plurality of elements may be a fuel supply passage and a first surface of the fuel supply passage may be defined by the injector body and a second surface of the fuel supply passage may be defined by a high pressure sleeve, the sleeve being arranged such that, in use, sleeve generated loadings seal the fuel supply passage at the partially closed end. Conveniently, at least one of the plurality of elements may abut and be held in place by the partially closed end of injector body. The plurality of elements may also be arranged to be urged towards the partially closed end by sleeve generated loadings.
In such a fuel injector configuration a first end of the injector body may have an opening through which the injector nozzle projects and the injector body may define a bore within which the high pressure sleeve is located, an annular gap between the sleeve and injector body defining the fuel supply passage arrangement. It is further noted that in such a configuration the high pressure sleeve may be arranged to apply a load on the injector body and injector nozzle in order to seal the fuel injector.
The fuel injector may further comprise a capnut arranged to secure the injector nozzle to the injector body. Alternatively, as noted above, the presence of the axially distributed supply passage of the present invention may be realized by the presence of a high pressure sleeve of material within the injector body. This sleeve may be arranged such that it can apply a compressive loading between the injector body and the injector nozzle thereby allowing a variant of the injector to be designed that does not require a capnut to hold the various elements together.
The fuel injector may also comprise an end cap arrangement located at the end of the injector body opposite to the injector nozzle. The end cap arrangement may further comprise features that extend from the injector body (e.g. an electrical connection to an actuator arrangement may pass through the injector body into the end cap arrangement). Some of the element connector means may be located on or in the end cap arrangement (e.g. in the above example the electrical connections may be in communication with an electrical connection point mounted on the end cap arrangement).
According to a second aspect of the present invention there is provided a method of assembling a fuel injector comprising providing an injector body defining a bore, the injector body having an open end and a partially closed end, the partially closed end comprising an opening dimensioned to receive an injection nozzle, the method comprising: inserting an injection nozzle into the open end of the bore and through the opening in the partially closed end of the injector body; inserting a plurality of elements of the fuel injector into the bore via the open end; fixing an end cap arrangement to the open end of the injector body.
The present invention comprises a fuel injector configuration which advantageously allows elements to be loaded down the injector from an opening in the top. A partially closed end of the injector bore is arranged to retain the elements in place thereby removing the need for a capnut.
Preferably, the injector body may define an injector body axis and the internal elements may be annularly arranged about the injector body axis. This allows the elements to be concentrically mounted so that their associated inlet or outlets may be rotated to any desired orientation. This has benefits in engine design as there is flexibility in the arrangement of the injector.
Conveniently the fuel injector may comprise a plurality of element connector means for providing fluid and/or electrical connection into/out of the fuel injector.
Preferably the method further comprises rotating at least one element connector means about the injector body axis until a desired orientation of the element connector means is achieved.
According to a third aspect therefore the present invention provides for a fuel injector for an internal combustion engine, the fuel injector comprising: an injector body of substantially elongate form and defining an injector body axis; an injector nozzle disposed at one end of the injector body and a fuel supply passage arrangement defined in the injector body and in fluid communication with the injector nozzle, the fuel supply passage arrangement arranged in use to contain fuel under high pressure; and wherein the fuel supply passage arrangement is axially distributed around the injector body axis.
According to a fourth aspect of the present invention there is provided a fuel injector for an internal combustion engine, the fuel injector comprising: an injector body of substantially elongate form and defining an injector body axis; an injector nozzle disposed at one end of the injector body; and a plurality of elements located, at least in part, within the injector body, wherein the plurality of elements are arranged axially about the injector body axis.
Conveniently, the plurality of elements may be arranged concentrically. The fuel injector may also further comprise a plurality of element connector means for providing fluid and/or electrical connection into and/or out of the fuel injector wherein at least some of the element connector means are arranged to be rotatable relative to one another about the injector body axis.
The plurality of elements may comprise a high pressure supply passage, a backleak return fuel path, an electrically controlled actuator arrangement for controlling fuel supply through the injector nozzle; and electrical connections arranged to connect the actuator arrangement to a control unit.
It is noted that preferred features of the first aspect of the present invention may apply to the second, third and fourth aspects of the present invention.
In order that the invention may be more readily understood, reference will now be made, by way of example, to the accompanying drawings in which:
a to 2e illustrate the working principle of a known fuel injector;
In the following description it is noted that references to “fuel supply passage” or “fuel pathway” are equivalent to the terms “fuel supply passage arrangement” or “fuel supply line”.
As can be seen from
Considering the arrangement of
In the arrangement of
In contrast to the arrangement of
In the arrangement of
Low pressure sealing is provided at end 112 of the injector body 3 by means of an O-ring type seal 120 between the injector body 3 and an end cap arrangement 201.
In the
In both
The fuel injectors according to the embodiments of the invention shown in
The flexible nature of the invention which is the subject of the present invention is illustrated with respect to the two cross section slices that have been taken through the fuel injectors of
Although
Similar alternative arrangements (whereby an element is in communication with an element connector means via an annular feature such as an annular passage or annular gallery) may be used for any of the elements within the fuel injector. For example, the backleak return fuel return 17 may comprise a straight drilling through the injector body which is in turn connected to an annular passage or gallery in the vicinity of a low pressure outlet such that the outlet is in fluid communication with the backleak return via the annular passage or gallery.
In
In
It is noted that, compared to the arrangement of
It is further noted that, compared to the arrangement of
A still further embodiment of a fuel injector in accordance with an embodiment of the present invention is shown in
In the injector of
Whether the fuel injector comprises an annular gallery or not may determine the manner in which the element connector means may be rotated relative to one another.
For example in the arrangement shown in
However, by contrast, in the arrangement shown in
The presence of the annular gallery 203 also means that the high pressure inlet 101 may be rotated about the injector body axis relative to the injector body 3 (and still be in fluid communication with the high pressure fuel passage 3).
In a further variation of the above embodiments the electrical connection point 130 may be received within an arcuate slot in the end cap arrangement 201. In this manner the electrical connection point may be allowed limited annular movement about the injector body axis 19. In a yet further variation the low pressure sleeve 108 may be integrally formed with the end cap arrangement 201. In this yet further variation if the end cap arrangement 201 is rotated in order to vary the angular position of the element connector means then the low pressure sleeve will also rotate within the injector body 3.
The electrical connection point may also be arranged to be freely rotatable relative to the end cap arrangement 201. In such a variation the electrical connection point 130 may form the upper surface of the fuel injector. It is noted that the electrical connections 15 pass through a bore defined by the inner surface of the low pressure sleeve 108 into a similarly dimensioned bore within the end cap arrangement 201. In order to adequately seal this space from the engine system the radial extent of the electrical connection point 130 shown in
It will be understood that the embodiments described above are given by way of example only and are not intended to limit the invention, the scope of which is defined in the appended claims. It will also be understood that the embodiments described may be used individually or in combination.
Number | Date | Country | Kind |
---|---|---|---|
09158532.3 | Apr 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/055390 | 4/22/2010 | WO | 00 | 2/7/2012 |