The present invention relates to a fuel injector having a plastic sleeve that includes a solenoid coil.
Fuel injectors generally have a number of metallic housing components which are provided with a plastic extrusion coat after assembly. Such a fuel injector is described in, e.g., published German patent document DE 101 22 353.
A fuel injector for fuel-injection systems which is made up of two main components is described in, e.g., published German patent document DE 196 31 280. An inner valve part encompasses all individual components that lie along the direct flow path of the fuel, while an outer plastic component is formed mainly by a solenoid coil subassembly and a plastic coat. After adjustment, the valve component is inserted in a feed-through opening of the plastic part.
A particular disadvantage of the known fuel injectors, such as those exemplified above, is that the manufacture and assembly of such fuel injectors are labor-intensive and thus costly.
The fuel injector according to the present invention has the advantage that the plastic extrusion coat of the fuel injector's outer coat is provided in the form of a prefabricated plastic sleeve which encompasses the electrical parts of the solenoid circuit, i.e., the solenoid coil, the electrical line and the plug-in connection, in two plastic parts connected by a cross-piece. A recess allows simple installation and affixation of the plastic sleeve on the valve subassembly.
This arrangement enables faster assembly in fewer working steps, and the labor-intensive and often faulty plastic extrusion coat may be dispensed with.
It is also advantageous that the plastic sleeve is easy to slide onto the valve sleeve and is able to be fixed in place by a top that can be inserted radially into the recess of the plastic sleeve. A collar of the valve sleeve prevents axial sliding of the plastic sleeve.
It is also advantageous that the top has the shape of a circle segment with an angular expansion of at least 180°.
Fuel injector 1 includes a solenoid coil 2 which is wound on a coil brace 3. Coil brace 3 is encapsulated in a valve housing 4 which serves as outer pole of solenoid coil 2, and is sealed by a top 5. Solenoid coil is contacted via an electrical line 6. Coil brace 3 is penetrated by a valve sleeve 7 which has a tubular design and is extended in the direction of the fuel line by an insertion sleeve 8. Valve sleeve 7 and insertion sleeve 8 form an outer coat 20 of fuel injector 1.
The assembly of fuel injector 1 shown in
Continuing with
Fuel injector 1 may be activated in the conventional manner via an armature that cooperates with solenoid coil 2, in conjunction with a valve needle whose valve-closure member seals the spray-discharge orifices. The spray-discharge orifices are opened by lifting the valve needle and closed by the renewed lowering of the valve needle, e.g., with the aid of a restoring spring. The corresponding components are not shown further in the figures for the sake of maintaining clarity.
According to an example embodiment of the present invention, which is schematically shown in
Sleeve 13 is shown schematically in
A top 15 which has the form of a circular segment is provided for the further assembly of fuel injector 1, as shown in
The assembly according to an example embodiment of the present invention includes the following steps: a) sliding plastic sleeve 13 onto valve sleeve 7 provided with insertion sleeve 8; b) radial insertion of top 15 into recess 14; and c) welding valve housing 4, slip-fitted last, to valve sleeve 7 via a welding seam 18. As an alternative, it is also possible to join plastic sleeve 13 to valve housing 4 in a form-fitting manner by crimping. In this manner, the valve sleeve 7 is fixed in plastic sleeve 13. Sliding in the axial direction is prevented by a collar 19 which is formed on valve sleeve 7, into which insertion sleeve 8 is inserted. The fully assembled injector is shown in
The present invention is not limited to the exemplary embodiment shown, and the present invention may be applied to any designs of fuel injectors, e.g., for fuel injectors for direct injection or fuel injectors connected to a common-rail system.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 047 041.3 | Sep 2004 | DE | national |