1. Field of the Invention
The present invention relates to the field of fuel injectors, and more particularly to intensifier type fuel injectors.
2. Prior Art
Intensifier type fuel injectors are well known in the prior art. As an example, see U.S. Pat. No. 5,460,329. That patent discloses an electromagnetically actuated spool valve for controlling the coupling of an area over an intensifier piston to an actuating fluid under pressure or to a vent, the intensifier piston driving a smaller piston to intensify the pressure of fuel for injection purposes. While various types of valves are known for use with such injectors, the valves generally control the flow of actuation fluid to and from the area over intensifier piston.
While control valves of the foregoing type can be made relatively small and fast-acting, control of actuation fluid in this manner for direct fuel injection has certain limitations. In particular, a diesel fuel injector may intensify fuel pressure to a pressure on the order of 20,000 psi or higher, at which pressures the fuel will undergo substantial compression. This, in turn, means that there must be substantial actuation fluid flow into the chamber over the larger piston of the intensifier. In that regard, while, by way of an example, in an intensifier having an area ratio of 9:1, the pressure of the actuating fluid over the larger piston will only be 1/9 of the intensified pressure, the flow of actuation fluid required to achieve the compression and intensification of the fuel will be nine times that required because of the compression of the intensified fuel, thereby resulting in at least as much volumetric compression in the actuation fluid over the intensifier piston as in the intensified fuel. Consequently, intensification on actuation of the control valve(s) requires significant actuation fluid flow, and is therefore less than immediate. Also, this flow requirement sets the minimum size for the electrically operated control valves, and further requires de-intensification between injection events, making multiple injections during a single injection event difficult and energy consuming.
a is a cross section of an exemplary control module 26 as used in the fuel injector embodiment of
b is a diagram is a control fluid flow diagram for the control module of
a through 10c show top, front, and side views of a combustion cell or air-fuel module incorporating the present invention.
Certain details of the upper injector body assembly 24 are not illustrated in
Now referring to
Not readily visible in the cross-section of
Injection is terminated by first venting region 56 above spool 48, allowing coil spring 42 to move the spool to the position shown to terminate the supply of intensified fuel to the check valve, followed by the controlled venting of the intensifier actuation piston or pistons to allow the return of the intensifier piston(s) to its starting position and the refilling of the intensifier chamber with fuel under the effect of fuel supply pressure or the combination of fuel supply pressure and return spring (not shown). It should be noted that while in the preferred embodiment, the actuation fluid for the intensifier and for spool 56 is fuel, other actuation fluids such as engine oil may be used as desired.
Now referring to
In particular, spool valve 68 is comprised of a solenoid coil 1 controllably magnetizing a magnetic circuit which includes spool 72 of the spool valve and magnetic members 86 and valve body 88, the spool 72 being encouraged to the right-hand position by the spring washer 90 at the right-hand end of the spool and magnetically attractable to a left-hand position as desired. While the spool valve 68 in
Pilot valve 68 controls a main valve, generally indicated by the numeral 72, while spool valve 70 controls main valve 74. The main valves 72 and 74 may be substantially identical, both being spool valves in the embodiment shown. With respect to main valve 72, the right end of the spool 76 therein contains a small bore with sliding piston pin 78 therein which is pressurized on the left end by the pressure of the fluid in the supply port S and is vented at the right end. At the left end of spool 76 is another piston pin 80 within a corresponding larger bore in the spool 76, with the right end of pin 80 being coupled either to the supply port pressure or the vent pressure as controlled by the position of spool 72 in pilot valve 68. Thus, the spool valve 68 controls the position of spool 76, allowing a small spool valve with a very short stroke to cause a longer stroke in a somewhat larger diameter spool valve to control a relatively large flow area by a relatively small pilot spool valve. In that regard, for clarity, actual proportions are not shown. The position of spool 76 in turn controls the coupling of port 62 to the intensifier actuation fluid supply or the vent, port 62 being coupled to region 34 above intensifier piston 36. Similarly, pilot valve 70 controls main valve 74 and, thus, the coupling of port 64 coupled to region 30 over intensifier piston 32 to the intensifier actuation fluid pressure or vent in a similar manner.
Finally, a third spool valve, generally indicated by the numeral 82, controls the position of spool 84 which in turn controls the coupling of port 66 to the actuation fluid supply or vent, depending on the position of the spool. Port 66 is coupled to the region 58 (
The advantage of the assembly hereinbefore described is that the speed with which actual injection may be initiated and terminated is extremely high, as it is controlled by a small spool valve 82 controlling a small fuel injection fluid flow after the intensified pressure is reached, as opposed to the flow of intensifier actuation fluid which is many times higher. Thus, while the two-stage control for the application of intensifier actuating fluid to the intensifier piston or pistons may be substantially slower, that does not affect the speed of initiation or termination of injection. In that regard, for a single combustion event, the present invention is fast enough to use multiple injections of small quantities of fuel for pilot-injection purposes and/or for extending the overall injection period for such purposes as engine operation under low load and/or lower engine speed operation using a single intensification cycle, and in fact, the intensified pressure of the fuel may be changed during the multiple injections by control of pilot valve 68 and 70 during or between those injections. Thus, pilot injection may be at one fuel pressure, and the subsequent injection or injections at a different pressure, typically but not necessarily a higher pressure. In a preferred embodiment, the control module of
b provides a simplified diagram of the control module of
Other embodiments disclosed herein add control of fluid pressure over the needle 40 by including an additional valve mechanically coupled, in many embodiments actually integral with, the spool 48. This provides substantially simultaneous shifting between a) pressure over the “top” of the needle and “vent” pressure at the lower end of the needle, and b) vent pressure over the top of the needle and fuel at an intensified pressure for injection at the bottom of the needle.
Before going into the detailed operation of the injector, block diagrams of embodiments of such overall injector assemblies may be seen in
The embodiment of
Now referring to
In operation, the position of spool 102 is controlled by controllably coupling passage 122, and thus chamber 124 over the top of spool 102, to either rail pressure or a vent pressure. This is provided by a three-way needle control pilot valve, preferably a spool valve, shown schematically in the Figure, that may be of any of various types well known in the art. With passage 122 coupled to vent, the spool will be in its upper position because of spring 106 pushing upward on spring retainer 108 and in turn, on pin 114 pushing against the lower end of the spool. (The chamber in which the spring resides is vented.) In this position, fuel from the intensifier in passage 126, whether at an intensified pressure or approximately rail pressure during the intensifier return, is blocked by the poppet valve (118,120) from flowing through passage 128 to the lower needle chamber 130. At the same time, rail pressure is coupled from passage 132 through the spool valve and passages 134, 136 and 138 to chamber 140 over area 141 on the top of the needle 104 to hold the needle closed (down), the underside area 141 being vented.
When the needle control pilot valve is in a position to couple rail pressure through passage 122 to chamber 124 over the spool 102, the spool will move downward to its lower position, closing fluid communication between passage 132 and 134, and coupling passage 134 to the vent 139. It also closes communication between passages 144 and 128, and opens the poppet valve (118,120), coupling intensifier chamber 142 to the lower needle chamber 130 through the passages 126 and 128.
Consequently, for an injection event, an intensifier control valve means, which can be a 3-way intensifier control spool valve, can be actuated to couple rail pressure to the intensifier to intensify the fuel pressure as in the previously described embodiments, followed by actuation of the needle control pilot valve to couple the intensified fuel to the lower needle chamber and venting the region over the needle to initiate injection. Injection may be terminated by movement of the needle control pilot valve and the intensifier control valve to the opposite states, preferably but not necessarily by first movement of the needle control pilot valve, followed substantially immediately by movement of the intensifier control valve, to the opposite states. This also opens fluid communication between passages 144 and 128. Passage 144 is coupled to passage 146 having a valve at the top thereof coupled to a vent 147 and encouraged to the closed position by rail pressure on pin 148 acting on a seat at the top of passage 146. This sets a lower pressure limit for the lower needle chamber 130, in this embodiment, preferably to some fraction of the rail pressure.
In the foregoing embodiment, if multiple injections are to be used, such as, by way of example, a pre-injection followed by one or more main injection, the intensifier control valve may be actuated to intensify the fuel pressure, with the needle control pilot valve being actuated multiple times during a single actuation of the intensifier control valve to provide the desired multiple injections without requiring the time and energy that would be associated with multiple pressure intensification cycles. Also, while the embodiment of
In addition, the intensifier itself may have a single or a multiple, typically a dual, intensifier piston, that is, may be comprised of one or two driving pistons of equal or preferably unequal areas, preferably concentric or coaxial, each controlled by its own pilot control valve so is to be capable of achieving any of multiple intensified fuel pressures, such as described with respect to previously described embodiments and shown in
In the embodiment of
The advantage of the embodiment of
In the disclosure herein, the word “actuation” and perhaps variations thereof have been used with reference to various control valves, normally electrically operated spool valves. It is to be noted that actuation is used in the general sense to indicate the change of the valve from one state to another state, whether by the application of electrical power, the removal or termination of electrical power or by some other or more complicated electrical sequence.
a, 10b and 10c show a top, front, and side views of a combustion cell or air-fuel module similar to the device disclosed by U.S. Pat. Nos. 6,148,778 and 6,173,685. The combustion cell may include a fuel injector 91, hydraulically actuated engine intake valves 92 and engine exhaust valves 94, and the hydraulic control valves 96 and 98 to control the actuation of the engine valves. The disclosed fuel injector may be used in such a combustion cell, as the compact arrangement of the fuel injector control valves may allow the intake and exhaust valves to be positioned in close proximity to the fuel injector.
The above description discloses certain specific embodiments the present invention. It is to be understood by those skilled in the art that further variations and enhancements may be incorporated, depending on the application, without departing from the spirit and scope of the invention, including, but not limited to, the realization of the circuit in integrated circuit (IC) form. Thus while certain preferred embodiments of the present invention have been disclosed and described herein, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. Similarly, the various aspects of the present invention may be advantageously practiced by incorporating all features or various sub-combinations of features as desired.
This application claims the benefit of U.S. Provisional Patent Application No. 60/475,022 filed May 30, 2003 and U.S. Provisional Patent Application No. 60/485,948 filed Jul. 7, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4856713 | Burnett | Aug 1989 | A |
5108070 | Tominaga | Apr 1992 | A |
5429309 | Stockner | Jul 1995 | A |
5460329 | Sturman | Oct 1995 | A |
6026785 | Zuo | Feb 2000 | A |
6148778 | Sturman | Nov 2000 | A |
6161770 | Sturman | Dec 2000 | A |
6173685 | Sturman | Jan 2001 | B1 |
6257499 | Sturman | Jul 2001 | B1 |
6308690 | Sturman | Oct 2001 | B1 |
6360728 | Sturman | Mar 2002 | B1 |
6378497 | Keyster et al. | Apr 2002 | B1 |
6474304 | Lei | Nov 2002 | B1 |
6550453 | Tian | Apr 2003 | B1 |
20030178508 | Coldren | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040238657 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60485948 | Jul 2003 | US | |
60475022 | May 2003 | US |