The present invention relates to a fuel manifold for the direct injection of fuel into an internal combustion engine.
The present invention can be used particularly advantageously for the production of a fuel manifold for the direct injection of fuel into a fuel-driven internal combustion engine to which the following description will explicitly refer without going into detail.
In recent years, fuel-driven internal combustion engines, in which the fuel is injected directly into the cylinders, have come to the fore; in these engines, the fuel is supplied under pressure to a fuel manifold connected to a series of injectors (one for each cylinder of the engine), which are actuated cyclically to inject part of the fuel under pressure in the fuel manifold into a respective cylinder.
In known engines with indirect fuel injection, the fuel manifolds are currently made from plastic material (typically moulded technopolymers) and are secured to the intake manifold, which is also generally made from plastic material, by means of a series of screws. Plastic material is easy to process and extremely economic, but does not have good mechanical properties and is not therefore able to bear the relatively high pressures of the fuel used in direct fuel injection with the necessary safety margins.
In order to ensure the necessary mechanical strength, it has been proposed to use fuel manifolds made from steel in known direct fuel injection engines; these fuel manifolds are nevertheless costly because of the number of machining and welding operations to which they have to be subject. It has also been proposed to use fuel manifolds made from cast aluminum by means of gravity die casting; these fuel manifolds are also costly as gravity die casting is a relatively slow production method, requires a large number of machining operations once the component has been removed from the casting mould and imposes minimum component thicknesses of no less than 4–5 mm.
The object of the present invention is to provide a fuel manifold for the direct injection of fuel into an internal combustion engine which is free from the drawbacks described above and is easy and economic to embody.
The present invention therefore relates to a fuel manifold for the direct injection of fuel into an internal combustion engine including a head provided with a plurality of cylinders and injectors, each of which is connected to the fuel manifold and adapted to directly inject fuel into the respective cylinder. An air intake manifold is connected to the head in order to supply fresh air to the cylinders. The fuel manifold is formed by a single monolithic body which is made of thixotropic aluminum by means of a pressure die casting process. The manifold includes a supply duct adapted to distribute the fuel under pressure to the injectors and a flange disposed laterally to the supply duct wherein the flange has a plurality of through holes in order to be secured to the head of the engine by respective screws and further comprises a plurality of coupling members, each of which is adapted to bringing a respective cylinder in communication with an intake manifold. The supply duct includes a main cylindrical tubular channel having two opposite open ends one of which is used to supply the fuel under pressure and the other is closed by a screw cap. In the vicinity of the end closed by the screw cap the main cylindrical tubular channel has a first opening adapted to receive a pressure regulator and a second opening adapted to receive a pressure sensor.
The present invention will now be described with reference to the accompanying drawings, which show a non-limiting embodiment thereof, and in which:
In
A low pressure pump (not shown in detail) supplies the fuel from a tank (not shown in detail) to a high pressure pump 10 which in turn supplies the fuel to a fuel manifold 11; a series of injectors 12 (one for each cylinder 3) is connected to the fuel manifold 11, each of these injectors 12 being actuated cyclically to inject part of the fuel under pressure in the fuel manifold 11 into the respective cylinder 3. The pressure value of the fuel in the fuel manifold 11 is maintained instant by instant at a desired value by means of a pressure regulator 13 which is coupled to the fuel manifold 11 and is adapted to discharge any surplus fuel to a recycling duct which returns this surplus fuel upstream of the low pressure pump (not shown). A sensor 14, adapted to measure the pressure value of the fuel in the fuel manifold 11, is also connected to the fuel manifold 11.
As shown in
The flange 18 comprises a substantially plane plate 22 which extends laterally to the supply duct 16 from a median portion of this supply duct 16; each coupling member 21 comprises a tubular body 23 which rises from the plate 22 in a perpendicular manner with respect to the plane in which the plate 22 lies. Preferably, the end upper portion of each tubular body 23 is shaped to facilitate connection with a respective duct coming from the intake manifold 4. A lower surface 24 of the plate 22, i.e. the opposite surface with respect to the tubular bodies 23, is plane and has a relatively very small surface roughness so that it can be coupled in a leak-tight manner (possibly with the interposition of a gasket) with a corresponding upper surface 25 of the head 2.
A series of reinforcing ribs 26, involving both the plate 22 and the supply duct 16, are provided and are disposed perpendicularly with respect to the plane in which the plate 22 lies and with respect to the axis 17 of the supply duct 16. The flange 18 has a series of raised zones 27, via each of which a respective through hole 19 is provided for the passage of a connection screw 20 with the head 2 of the engine 1. Part of the reinforcing ribs 26 starts from the raised zones 27, while the remaining part of the reinforcing ribs 26 starts from the tubular bodies 23.
As shown in
Number | Date | Country | Kind |
---|---|---|---|
BO2003A0200 | Apr 2003 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
4966120 | Itoh et al. | Oct 1990 | A |
5014654 | Ishibashi | May 1991 | A |
5630466 | Garat et al. | May 1997 | A |
5682859 | Wakeman | Nov 1997 | A |
6338333 | Brosseau et al. | Jan 2002 | B1 |
6405711 | Smith et al. | Jun 2002 | B1 |
6427755 | Buckley | Aug 2002 | B1 |
6564856 | Buckley | May 2003 | B1 |
20030015170 | Klotz et al. | Jan 2003 | A1 |
20030051693 | Vichinsky | Mar 2003 | A1 |
20040025848 | Lee et al. | Feb 2004 | A1 |
20050188956 | Moschini et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
42 24 908 | Feb 1993 | DE |
199 20 195 | Nov 2000 | DE |
Number | Date | Country | |
---|---|---|---|
20050056256 A1 | Mar 2005 | US |