The present invention relates to gas turbine engine fuel flow control and, more particularly, to a system and method for providing proportional bypass valve error compensation for fuel flow control systems that include these valves.
Typical gas turbine engine fuel supply systems include a fuel source, such as a fuel tank, and one or more pumps that draw fuel from the tank and deliver pressurized fuel to the fuel manifolds in the engine combustor via a main supply line. The main supply line may include one or more valves in flow series between the pumps and the fuel manifolds. These valves generally include at least a main metering valve and a pressurizing-and-shutoff valve downstream of the main metering valve. In addition to the main supply line, many fuel supply systems also include a bypass flow line connected upstream of the metering valve that bypasses a portion of the fuel flowing in the main supply line back to the inlet of the one or more pumps, via a bypass valve. The position of the bypass valve is typically controlled by a head regulation scheme to maintain a substantially fixed differential pressure across the main metering valve.
The above-described fuel supply system, in many instances, uses a proportional head regulation control scheme. While generally safe, reliable, and robust, a proportional control scheme can suffer certain drawbacks. In particular, it can result in an error (or “droop”) of the controlled pressure drop, which may be relatively significant. For example, the error can be up to about 4% in some systems. To substantially eliminate this proportional droop error, some systems have implemented a proportional plus integral control scheme. While this alternative works generally well, and is also generally safe, reliable, and robust, it also suffers certain drawbacks. For example, it can result in increased system complexity and cost.
Hence, there is a need for a system and method of providing compensating for proportional pressure droop error in fuel flow control systems that does not result in increased system complexity and/or system cost. The present invention addresses one or more of these needs.
The present invention provides a fuel metering system proportional bypass valve error compensation system and method. In one embodiment, and by way of example only, in a fuel metering system that includes a metering valve and a proportional bypass valve that produces a differential pressure error across the metering valve, a method of controlling fuel flow in the fuel metering system includes supplying fuel from a fuel source to a supply line that has at least an outlet port. A first fraction of the fuel in the supply line is directed through the metering valve, which has a first variable area flow orifice, to the supply line outlet port. A second fraction of the fuel in the supply line is directed through the proportional bypass valve, which has a second variable area flow orifice, back to the fuel source. The differential pressure error produced by the bypass valve is determined. Fuel flow to the supply line outlet port is controlled by adjusting the area of the first variable area flow orifice based at least in part on the determined differential pressure error, and by adjusting the area of the second variable area flow orifice to maintain a substantially constant metering valve differential pressure across the first variable area orifice.
In another exemplary embodiment, a fuel metering system for controlling fuel flow to a gas turbine engine includes a fuel supply line, a metering valve, a bypass flow line, a proportional bypass valve, and a control circuit. The fuel supply line has an inlet adapted to couple to a fuel source and an outlet adapted to couple to the gas turbine engine. The metering valve is positioned in flow-series in the supply line, and produces a differential pressure thereacross when fuel flows therethrough. The bypass flow line is coupled to the fuel supply line upstream of the metering valve for bypassing a portion of the fuel in the supply line back to the inlet. The proportional bypass valve is positioned in flow-series in the bypass flow line and is configured to control flow therethrough to maintain a substantially constant differential pressure, which includes a differential pressure error produced by the proportional bypass valve, across the metering valve. The control circuit is adapted to receive a fuel flow command representative of a desired fuel flow and is operable to determine the differential pressure error, and to adjust the metering valve, based at least in part on the determined differential pressure error and the fuel flow command, to supply fuel through the metering valve to at the desired fuel flow.
Other independent features and advantages of the preferred system and method will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
A fuel delivery and control system for a gas turbine engine, such as a turbofan jet aircraft engine, according to one exemplary, is depicted in
One or more engine-driven pumps are positioned in flow-series in the supply line 106 and draw fuel from the fuel source 102. In the depicted embodiment, a booster pump 108, such as a relatively low horsepower centrifugal pump, and a high pressure fuel pump 110, such as a positive displacement pump, are used. The booster pump 108 draws fuel directly from the fuel source 102 and provides sufficient suction head for the high pressure pump 110. The fuel pump 110 then supplies the fuel, at a relatively high pressure, such as up to 1200 psig, to the remainder of the supply line 106.
A metering valve 112 is positioned in flow-series in the supply line 106 downstream of the fuel pump 110. The metering valve 112 includes a first variable area flow orifice 113 through which a portion of the fuel in the supply line 106 flows. A metering valve control device 114 is used to adjust the position of the metering valve 112, and thus the area of the first variable area flow orifice. In the depicted embodiment, the metering valve 112 is a hydraulically-operated valve and the metering valve control device 114 is an electro-hydraulic servo valve (EHSV) that supplies a metering valve control signal output 115. The control signal output 115 from the metering valve control device 114 is coupled to the metering valve 112 and is used to adjust the position of the metering valve 112 by controlling the flow of operational hydraulic fluid to the metering valve 112.
It will be appreciated that the metering valve 112 and control device 114 described above are only exemplary of a particular embodiment, and that each may be implemented using other types of devices. For example, the metering valve 112 could be an electrically operated valve. In this case, a control device 114, such as an EHSV, may not be used, or the control device 114 could be implemented as an independent controller. In any case, as will be described further below, fuel flow rate to the combustor 104 is controlled by adjusting the position of the metering valve 112, and thus the area of the first variable area flow orifice 113, via the metering valve control device 114.
A position sensor 117 is coupled to the metering valve 112, and is used to sense the metering valve's position and supply a valve position signal 119. The position of the metering valve 112 is directly related to the area of the first variable area flow orifice 113, which, as will be discussed further below, is directly related to the fuel flow rate to the combustor 104. The position sensor 117 is preferably a dual channel linear variable differential transformer (LVDT), but could be any one of numerous position sensing devices known in the art. For example, the position sensor 117 could be a rotary variable differential transformer (RVDT), an optical sensor, a float-type sensor, or the like.
A bypass flow line 120 is connected to the supply line 106 between the fuel pump 110 and the metering valve 112, and bypasses a portion of the fuel in the supply line 106 back to the inlet of the fuel pump 110. It will be appreciated that the present invention is not limited to bypassing a portion of the fuel back to the inlet of the fuel pump 110, but also includes embodiments in which the fuel is bypassed back to the inlet of the booster pump 108, or back to the fuel source 102.
A proportional bypass valve 122 is positioned in flow-series in the bypass flow line 120, and includes a second variable area flow orifice 123 through which fuel in the bypass flow line 120 flows. Thus, as indicated by the flow arrows in
The position of the proportional bypass valve 122, and thus the area of the second variable area flow orifice 123, is adjusted under the control of a head sensor 128. The head sensor 128 is configured to sense the differential pressure (ΔP) between the inlet and outlet of the metering valve 112. The head sensor 128, which is coupled to the proportional bypass valve 122, adjusts the area of the second variable area flow orifice 123 based on the sensed ΔP. In particular, the head sensor 128, implementing proportional control, adjusts the area of the second variable area flow orifice 123 to maintain a substantially constant, predetermined ΔP across the metering valve 112. The reason for this will be discussed in more detail below.
It will be appreciated that the head sensor 128 may be any one of numerous types of sensors known in the art. In a particular preferred embodiment, the head sensor 128 is a thermally-compensated, spring-loaded, diaphragm-type sensor. The head sensor 128 is coupled to the proportional bypass valve 122, and includes a diaphragm 127 across which the metering valve differential pressure is applied, and a spring 129 disposed on one side of the diaphragm 127. It will be appreciated, however, that the head sensor 128 may be implemented using any one of numerous methods. For example, the diaphragm may be replaced with an equivalent servo-valve. Its selection may be dependent, for example, on the fuel system 100 arrangement and type of valve used for the proportional bypass valve 122.
A control circuit 130, which may be implemented within an engine controller, such as a Full Authority Digital Engine Controller (FADEC) or other electronic engine controller (EEC), controls the flow of fuel to the combustor 104. To do so, the control circuit 130 receives various input signals and controls the fuel flow rate to the combustor 104 accordingly. In particular, the control circuit 130 receives an input control signal 132 from, for example, throttle control equipment (not illustrated) in the cockpit, the position signal 119 from the position sensor 117, a compressor discharge pressure signal 121 representative of the discharge pressure from the compressor in the non-illustrated engine, and an ambient pressure signal 125 representative of ambient pressure around the system 100. The control circuit 130, in response to these signals, supplies a drive signal 133 to the metering valve control device 114. In response to the drive signal 133, the metering valve control device 114, as was described above, adjusts the area of the first variable area flow orifice 113 to obtain the desired flow rate to the combustor 104. Specifically, the fuel flow rate (WF) to the combustor 104 is controlled in accordance with the following flow equation (Equation 1):
WF=K1×AMV×√{square root over (ΔP)},
where K1 is a flow constant that is a function of fuel density, fuel temperature, and metering valve discharge coefficient (CD), AMV is the area of the first variable area flow orifice 113, which is a known function of metering valve valve position, and ΔP is the differential pressure across the metering valve 112. The proportional bypass valve 122, as was noted above, is normally adjusted to maintain a constant ΔP across the metering valve 112. Thus, since K1 is a constant, the flow rate, Wf, is controlled by adjusting the area, A, of the first variable area flow orifice 113.
As was noted above, proportional control is implemented by the head sensor to maintain a constant ΔP across the metering valve 112. As was previously noted, proportional control can introduce error. Thus, when the differential pressure drop error (ΔPERROR) is accounted for, the flow equation is more accurately represented by the following equation (Equation 2):
WF=K1×AMV×√{square root over (ΔPREF+ΔPERROR)},
where ΔPREF is a reference differential pressure value that is determined and set during bypass valve 122 design and acceptance testing.
The control circuit 130 is configured to provide proportional bypass valve error compensation to estimate the differential pressure error (ΔPERROR). Thus, the area of the first variable area flow orifice 113 is adjusted based at least in part on the differential pressure error. A functional block diagram depicting at least a portion of the control circuit 130 and an error compensation algorithm implemented therein is provided in
Turning now to
The differential pressure error (ΔPERROR) is determined using an algorithm 200 that is based on a set of state equations for various system components that impact proportional head regulation, and thus the resulting bypass valve position. The algorithm determines (or estimates) the differential pressure error (ΔPERROR) by determining (or estimating) the position of the proportional bypass valve 122 relative to a known reference position (XBPV
With the above background in mind, the differential pressure error (ΔPERROR) is determined from a known relationship for the proportional bypass valve 122. In particular, when used with the spring-biased, diaphragm-type head sensor 128 described above, the proportional bypass valve 122 may be described by the following relationship:
ΔP×ADIAPHRAGM=K2 ×XBPV,
where ADIAPHRAGM is the area of the diaphragm 127, K2 is the spring constant of the spring 129, and XBPV is the position of the bypass valve 122 through the compressed distance of the spring 129. It will be appreciated that XBPV is additionally described by the following relationship:
XBPVXBPV
From this, it may thus be seen that ΔPERROR is described by the following relationship:
Thus, as shown in
In the depicted embodiment, the bypass valve displacement from the reference position (XBPV
WBPV=Wpump−WFMVC,
where WMVC is calculated metered fuel flow, which is determined with sufficient accuracy by filtering the fuel flow command (WFCMD) using a first-order lag filter 216. The second relationship that describes bypass valve fuel flow is:
WBPV=K3×ABPV×(P1−P0)0.5,
where K3 is a flow constant that is a function of fuel density, fuel temperature, and bypass valve discharge coefficient (CD), ABPV is the area of the second variable area flow orifice 123, P1 is fuel pump 110 discharge pressure, and P0 is a fuel control reference pressure that is set by the booster pump 108. Before proceeding further it is noted that although use of the fuel flow command (WFCMD) is preferred, in part because it is a variable that is independent of the final value that is being calculated, it will be appreciated that in an alternative embodiment measured fuel flow (Wf), which is the final dependent variable that is being calculated, could instead be used.
The area of the second variable area flow orifice 123 (ABPV) is described by:
ABP=K4×XBPV,
where K4 is a constant that is based on the assumption that the relationship between bypass valve stroke and area is linear. When this equation is solved in terms of bypass valve flow (WBPV), it yields the following:
Because, as was previously noted, bypass valve position (XBPV) is described by:
XBPV=XBPV
it follows that bypass valve displacement from the reference position (XBPV
From the above relationships, it may thus be seen that bypass valve displacement from the reference position (XBPV
Thus, as shown in
Fuel pump discharge pressure (P1) is determined from various engine and system pressures. In the depicted embodiment, these pressures include engine compressor discharge pressure (PCD), fuel nozzle differential pressure (ΔPNOZ), a reference metering valve differential pressure value (ΔPMV
As with the pump discharge pressure (P1), the fuel nozzle differential pressure (ΔPNOZ) is determined from various parameters. In particular, this value is determined based on the previously described calculated metered fuel flow (WMVC), and a fuel nozzle flow number (FNNOZ), which is known by design, and is described by the following relationship:
Thus, as shown in
Fuel control reference pressure (P0), as noted above, is set by the booster pump 108. More specifically, for the preferred embodiment, in which the booster pump 108 is a centrifugal pump, the fuel control reference pressure is a function of the square of the booster pump rotational speed (NPUMP). In particular, since the booster pump 108 is an engine driven centrifugal pump, the fuel control reference pressure (P0) is described by the following relationship:
P0=K5×NPUMP2+K6,
where K5 and K6 are each constants associated with the booster pump 108. It is noted that booster pump speed (NPUMP) is a function of engine speed, and more particularly, a function of engine high pressure spool speed (N2) and the gearbox ratio (KGEARBOX) associated with a non-illustrated gearbox that may be disposed between the engine and the booster pump 108. Thus, as
Turning now to fuel pump flow (WPUMP), it is noted that this parameter may be described by the following relationship:
WPUMP=(K7×NPUMP)−(K8×P1),
where K7 is a constant associated with the fuel pump 110, K8 is a constant for flow reduction due to pump back pressure, NPUMP is engine-driven fuel pump speed, and P1 is, as was previously noted, fuel pump discharge pressure. Fuel pump speed (NPUMP), like booster pump speed, is a function of engine speed. Indeed, in the depicted embodiment, both pumps 108, 110 are driven at the same speed, and thus use the same pump speed value (NPUMP). Thus, as further depicted in
The control circuit 130 configuration described herein compensates for proportional pressure droop error in fuel flow control system, and does so by implementing a methodology that is relatively non-complex, and thus less costly as compared to other, more complex methodologies.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.