The technical field generally relates to fuel delivery modules for motor vehicles that provide fuel from fuel reservoirs, and more particularly to fuel delivery modules capable of mitigating electrostatic discharge resulting from fuel flow through the fuel module.
It is known that conduit structures that are exposed to turbulent fuel flow may, under some circumstances, acquire an electrostatic (or static electric) charge. Left unabated, electrostatic charge buildup can lead to spontaneous discharge if and when the charge exceeds the breakthrough voltage between the charged element and nearest ground which may ultimately lead to failure of the conduit requiring replacement. Accordingly, it is common to provide a conductive path to the vehicle ground plane to discharge any static charge that may be developed in conduits such as fuel delivery modules for vehicles. Plastic materials employed for fuel delivery module, such as polyoxymethylene (POM), are generally not conductive and so are typically combined or impregnated with conductive additives (such as carbon powders, carbon fibers or stainless steel fibers) to increase conductivity. These additives generally reduce the tensile or creep strength of the material and may react differently when exposed to environmental input such as heat and fuel compared to the base plastic. Further, these materials may be higher cost and require more complex processing. Accordingly, it is preferred to minimize the use of these conductive additives.
Accordingly, due to its lower cost and higher strength it is desirable to use non-conductive polyoxymethylene in fuel modules for vehicles. In addition, it is desirable to use a non-conductive polyoxymethylene that can be made conductive without a reduction in material strength or performance. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
A system is provided for a fuel delivery module with electrostatic discharge mitigation. In one embodiment, the system includes a fuel pump having a power and ground connection for pumping fuel. A fuel filter in fluid communication with the fuel pump, the fuel filter including one or more components made of a non-conductive plastic and having a sulfonated surface covered with a conductive surface formed over the sulfonated surface. The conductive surface is electrically coupled to the ground connection of the fuel pump (or other suitable connection to the vehicles ground plane). The system includes a fuel exit port in fluid communication with the fuel filter, the fuel exit port being formed from a non-conductive plastic having a sulfonated interior surface with a conductive surface formed over the sulfonated interior surface and also electrically coupled to the ground connection of the fuel pump.
A method is provided for mitigation of electrostatic discharge in a fuel module. In one embodiment, the method includes sulfonating non-conductive plastic components of the fuel delivery module to provide a sulfonated layer on the non-conductive plastic components and forming a conductive layer over the sulfonated layer to provide an electrical discharge path for electrostatic buildup resulting from fuel moving through the fuel module.
The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the application and uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as “first,” “second,” “third,” etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language.
Additionally, the following description refers to elements or features being “connected” or “coupled” together. As used herein, “connected” may refer to one element/feature being directly joined to (or directly communicating with) another element/feature, and not necessarily mechanically. Likewise, “coupled” may refer to one element/feature being directly or indirectly joined to (or directly or indirectly communicating with) another element/feature, and not necessarily mechanically. However, it should be understood that, although two elements may be described below, in one embodiment, as being “connected,” in alternative embodiments similar elements may be “coupled,” and vice versa. Thus, although the schematic diagrams shown herein depict example arrangements of elements, additional intervening elements, devices, features, or components may be present in an actual embodiment.
Finally, for the sake of brevity, conventional techniques and components related to vehicle electrical and mechanical parts and other functional aspects of the system (and the individual operating components of the system) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent example functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the invention. It should also be understood that
Referring to the drawings, wherein like reference numbers refer to like components,
In
Referring now to
In order to supply electricity to operate the fuel pump 206 a power lead 232 (or series of leads) and a ground (or chassis) lead 234 are provided for the fuel pump 206. As noted above, conduits or surfaces exposed to turbulent fuel flow may, under some circumstances, acquire an electrostatic (or static electric) charge. Left unabated, electrostatic charge buildup can lead to spontaneous discharge if and when the charge exceeds the breakthrough voltage between the charged element and nearest ground which may ultimately lead to failure of the exposed components requiring replacement. A conductive path to the vehicle ground plane is provided to discharge any static charge that may be developed. In some embodiments, this conductive path is provided from the ground lead 243 that is coupled to the fuel pump 206. The conduit 214 is made conductive, which provides a ground path to the fuel filter 216. In some embodiments, the fuel filter is provided with a discharge to ground path via an optional ground lead 236.
Accordingly to exemplary embodiments, various components of the fuel module 108 are formed of non-conductive polyoxymethylene (POM) and made conductive via a sulfonation process prior to forming a conductive layer over a sulfonation layer formed on the component by the sulfonation process that will be discussed in detail in connection with
Referring now to
In some embodiments, the base material 300 of a component of the fuel module 108 is made of non-conductive polyoxymethylene (POM). As used herein sulfonation refers to a process by which a component is exposed to an atmosphere of sulfur-dioxide or sulfur-trioxide sufficient to form a sulfonation layer 302 on the base material 300. After the sulfonation process, a conductive layer 304 may be applied over the sulfonation layer 302 via conventional plating, sputtering or vapor deposition techniques. In some embodiments, the conductive layer is formed of a fuel compatible material such as tin, nickel, gold or palladium.
With reference back to
Another component experiencing high fuel flow that may cause turbulence is the filter conduit 222. In some embodiments, the filter conduit 222 is an extruded component made of polyamide, polyethylene, POM, or Polyvinylidene fluoride (PVDF) that can be made conductive via conventional coextruded multilayer construction techniques where the inner layer is compounded with conductive additives as described above. However, if the filter conduit 222 were made of non-conductive polyoxymethylene, the interior surface 252 could be sulfonated and have a conductive layer applied.
Still another component experiencing high fuel flow that may lead to turbulence is the fuel exit port 226. In some embodiments, the fuel port 226 is formed as an elbow having an inlet 254, and outlet 256 and an angled portion 258. This configuration may cause fuel flowing through the fuel exit port 226 to experience a 90 degree change in direction. Thus, there is an increased possibility for fuel flow turbulence to develop within the fuel exit port 226. Accordingly, the interior surface 260 (or at least the portion thereof forming the angled portion 258) could be sulfonated and have a conductive layer applied.
Accordingly, an improved fuel module is provided for a vehicle having electrostatic buildup discharge protection. The sulfonation process allows a conductive layer to be applied over materials such as non-conductive polyoxymethylene without causing the material to become brittle or difficult to mold. The sulfonation and conductive layering process may be used selectively on some components or component surfaces as it is electrically compatible with other components made conductive via conventional techniques.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5085773 | Danowski | Feb 1992 | A |
5156783 | Seizert | Oct 1992 | A |
5164084 | Danowski et al. | Nov 1992 | A |
5380432 | Brandt | Jan 1995 | A |
5382359 | Brandt | Jan 1995 | A |
6004462 | Yamada et al. | Dec 1999 | A |
20090230674 | Villaire et al. | Sep 2009 | A1 |
20100323109 | Hamilton | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20140216416 A1 | Aug 2014 | US |