The present invention generally relates to a fuel nozzle assembly for use in a combustor of a gas turbine. More particularly, this invention relates to a fuel nozzle assembly having a premix pilot nozzle.
A gas turbine generally includes an inlet section, a compressor section, a combustion section, a turbine section and an exhaust section. The inlet section cleans and conditions a working fluid (e.g., air) and supplies the working fluid to the compressor section. The compressor section progressively increases the pressure of the working fluid and supplies a compressed working fluid to the combustion section. The compressed working fluid and a fuel are mixed within the combustion section and burned in a combustion chamber to generate combustion gases having a high temperature and pressure. The combustion gases are routed along through a hot gas path into the turbine section where they expand to produce work. For example, expansion of the combustion gases in the turbine section may rotate a shaft connected to a generator to produce electricity.
The combustion section generally includes a plurality of combustors annularly arranged about an outer casing. In lean premix style combustion systems, each combustor includes one or more premix type fuel nozzles. A typical premix fuel nozzle includes a center body that is at least partially surrounded by an outer tube or sleeve. A premix flow passage is defined between the outer sleeve and the center body. Multiple vanes or struts extend between the center body and the outer sleeve within the premix flow passage.
In operation, fuel is injected into compressed air flowing through the premix flow passage. The vanes impart angular swirl to the compressed air thus enhancing mixing with the fuel upstream from a combustion zone of the combustor. The premixed fuel-air is generally a fuel-lean mixture. The fuel-lean mixture burns more efficiently, thus reducing CO emissions and producing lower NOx emissions than diffusion flame technology.
At least one of the premix type fuel nozzles may include a pilot nozzle. The pilot nozzle may be coaxially aligned with and disposed within the center body of the corresponding fuel nozzle upstream from the combustion zone. During particular combustion operation modes, the pilot nozzle may deliver a premixed fuel and air mixture to the combustion zone to produce a premixed pilot flame. The premixed pilot flame is generally used to ensure flame stability as the combustor is operated in certain modes and/or when the combustor transitions between various modes of operation.
In order for the pilot nozzle to function, pilot or compressed air and pilot fuel must be supplied through the center body to the pilot nozzle. However, space restrictions within the center body may limit possibilities for routing the pilot air and fuel to the pilot nozzle, thus potentially limiting overall effectiveness of the pilot nozzle. Therefore, an improved fuel nozzle assembly having a pilot nozzle would be useful in the technology.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment of the present invention is a fuel nozzle assembly. The fuel nozzle assembly includes a center body that extends axially along a centerline of the fuel nozzle assembly. The center body includes a pilot air passage and a pilot fuel passage defined therein. A pilot nozzle is disposed within a downstream end portion of the center body. The pilot nozzle includes and/or defines a plurality of premix passages. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is positioned axially downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. An outer sleeve is coaxially aligned with and radially spaced from the center body and defines an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage. The inlet passage extends through the outer sleeve, the strut and the center body.
Another embodiment of the present invention is a combustor for a gas turbine. The combustor generally includes an end cover that is coupled to an outer casing. The end cover and the outer casing at least partially define or form a head end portion of the combustor. The head end is in fluid communication with a compressor of the gas turbine. The combustor also includes a fuel nozzle assembly that is connected to the end cover and that extends axially within the head end portion of the combustor. The fuel nozzle includes a center body that extends axially along a centerline of the fuel nozzle assembly. The center body includes a pilot air passage and a pilot fuel passage that are defined therein. A pilot nozzle is disposed within a downstream end portion of the center body and includes a plurality of premix passages. Each premix passage has an inlet that is in fluid communication with the pilot air passage, an outlet that is disposed downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage. The fuel nozzle further includes an outer sleeve that is coaxially aligned with and radially spaced from the center body so as to define an annular passage therebetween. A strut extends radially outwardly from the center body to the outer sleeve. The fuel nozzle assembly further includes an inlet passage that is in fluid communication with the pilot air passage and the head end portion of the combustor. The inlet passage extends through the outer sleeve, the strut and the center body.
Another embodiment of the present invention is a fuel nozzle assembly. The fuel nozzle assembly includes a center body that extends axially along a centerline of the fuel nozzle assembly. The center body includes an annular pilot air passage and an annular pilot fuel passage defined within the center body. The pilot air passage is defined radially outwardly from the pilot fuel passage. The fuel nozzle assembly further includes a base portion that is in fluid communication with the pilot air passage and that is configured to receive pilot air from an end cover of a combustor. A pilot nozzle is disposed within a downstream end portion of the center body. The pilot nozzle includes and/or defines a plurality of premix passages. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet that is downstream from the inlet and a fuel port in that is fluid communication with the pilot fuel passage.
Another embodiment of the present invention includes a combustor. The combustor includes an end cover that is coupled to an outer casing. The end cover and the outer casing form a head end portion of the combustor. The combustor also includes a fuel nozzle assembly that is connected to the end cover and that extends axially within the head end portion of the combustor. The fuel nozzle includes a center body that extends axially along a centerline of the fuel nozzle assembly. The center body includes an annular pilot air passage and an annular pilot fuel passage defined within the center body. The pilot air passage is defined radially outwardly from the pilot fuel passage. The fuel nozzle assembly further includes a base portion that is in fluid communication with the pilot air passage and that is configured to receive pilot air from the end cover. The fuel nozzle further includes a pilot nozzle that is disposed within a downstream end portion of the center body. The pilot nozzle includes or defines a plurality of premix passages. Each premix passage includes an inlet that is in fluid communication with the pilot air passage, an outlet disposed downstream from the inlet and a fuel port that is in fluid communication with the pilot fuel passage.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents. Although exemplary embodiments of the present invention will be described generally in the context of a premix fuel nozzle assembly for a land based power generating gas turbine combustor for purposes of illustration, one of ordinary skill in the art will readily appreciate that embodiments of the present invention may be applied to any style or type of combustor for a turbomachine and are not limited to combustors or combustion systems for land based power generating gas turbines unless specifically recited in the claims.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
The compressed air 18 is mixed with a fuel 20 from a fuel supply system 22 to form a combustible mixture within one or more combustors 24. The combustible mixture is burned to produce combustion gases 26 having a high temperature, pressure and velocity. The combustion gases 26 flow through a turbine 28 of a turbine section to produce work. For example, the turbine 28 may be connected to a shaft 30 so that rotation of the turbine 28 drives the compressor 16 to produce the compressed air 18. Alternately or in addition, the shaft 30 may connect the turbine 28 to a generator 32 for producing electricity. Exhaust gases 34 from the turbine 28 flow through an exhaust section 36 that connects the turbine 28 to an exhaust stack 38 downstream from the turbine 28. The exhaust section 36 may include, for example, a heat recovery steam generator (not shown) for cleaning and extracting additional heat from the exhaust gases 34 prior to release to the environment.
The combustor 24 may be any type of combustor known in the art, and the present invention is not limited to any particular combustor design unless specifically recited in the claims. For example, the combustor 24 may be a can-annular or an annular combustor.
In an exemplary embodiment, as shown in
One or more fuel nozzle assemblies 48 extend axially downstream from the end cover 44 within and/or through the head end 46. At least some of the fuel nozzle assemblies may be in fluid communication with the fuel supply system 22 via the end cover 44. In particular embodiments, at least one of the fuel nozzle assemblies 48 may be in fluid communication with an extraction air supply 50 for example, via the end cover 44.
The combustor 24 may also include one or more liners 52 such as a combustion liner and/or a transition duct that at least partially define a combustion chamber 54 within the outer casing 40. The liner(s) 52 may also at least partially define a hot gas path 56 for directing the combustion gases 26 into the turbine 28. In particular configurations, one or more flow or impingement sleeves 58 may at least partially surround the liner(s) 52. The flow sleeve(s) 58 may be radially spaced from the liner(s) 52 so as to define an annular flow path 60 for directing a portion of the compressed air 18 towards the head end portion 46 of the combustor 24.
In particular embodiments, as shown in
The center body 102 is generally annular and may comprise of a singular tube 116 or a plurality of tubes 116 joined together to form a singular or continuous center body 102. The center body 102 generally includes an upstream end portion 118 that is axially spaced from the downstream end portion 108. The center body 102 may also include an inner surface 122 that is radially spaced from an outer surface 124.
In various embodiments, the pilot nozzle 106 is generally annular and includes an upstream end or portion 126 that is axially spaced from a downstream end or portion 128. The pilot nozzle 106 further includes an inner wall 130 that is radially spaced from an outer wall 132. In particular embodiments, the outer wall 132 of the pilot nozzle 106 is slideably engaged with the inner surface 122 of the center body 102, thus allowing for axial thermal growth or contraction of the pilot nozzle 106 with respect to the center body 102 during operation of the combustor 24.
In various embodiments, the pilot nozzle 106 includes a plurality of premix passages 134 that extend substantially axially through the pilot nozzle 106. Each premix passage 134 includes an inlet 136 that is defined and/or disposed along the upstream end portion 126 of the pilot nozzle 106 and an outlet 138 that is defined and/or disposed along the downstream end portion 128 of the pilot nozzle 106. The outlet 138 is formed downstream from the inlet 136. In particular embodiments, the plurality of premix passages 134 is annularly arranged about the centerline 104 of the fuel nozzle assembly 100 between the inner wall 130 and the outer wall 132 of the pilot nozzle 106. Each premix passage 134 includes at least one fuel port 140 defined between the corresponding inlet 136 and outlet 138.
In various embodiments, the fuel nozzle assembly 100 includes a pilot air passage 142 and a pilot fuel passage 144 that are defined concentrically within the center body 102. In particular embodiments, the pilot air passage 142 is disposed or formed radially outwardly from the pilot fuel passage 144. One or more of the inlets 136 of the premix passages 134 are in fluid communication with the pilot air passage 142. In particular embodiments, the pilot air passage 142 is defined between an intermediate tube 146 and the center body 102. The intermediate tube 146 extends coaxially within the center body 102. For example, the pilot air passage 142 may be defined between an outer surface 148 of the intermediate tube 146 and the inner surface 122 of the center body 102. In particular embodiments, a downstream end 150 of the intermediate tube 146 is sealed and/or fixedly connected to the upstream end portion 126 of the pilot nozzle 106. In one embodiment, the downstream end 150 of the intermediate tube 146 is sealed and/or fixedly connected to the upstream end portion 126 of the pilot nozzle 106 radially inwardly from the inlets 136 of the premix passages 134.
In various embodiments, as shown in
In one embodiment, a downstream end 154 of the inner tube 152 forms a seal against an inner surface 156 of the downstream end 128 of the pilot nozzle 106. In this configuration, a portion the pilot fuel passage 144 is at least partially defined between an outer surface 158 of the inner tube 152 and the inner wall 130 of the pilot nozzle 106. In particular embodiments, the inner tube extends axially from a base portion 160 of the fuel nozzle assembly 100. The base portion 160 may be configured to connect to the end cover 44. In one embodiment, the pilot fuel passage 144 is in fluid communication with the end cover 44 (
In operation, as provided collectively in
In particular embodiments, as shown in
The center body 202 is generally annular and may comprise of a singular tube 216 or a plurality of tubes 216 joined together to form a singular or continuous center body 202. The center body 202 generally includes an upstream end portion 218 that is axially spaced from the downstream end portion 208. The center body 202 may also include an inner surface 222 that is radially spaced from an outer surface 224.
In various embodiments, the pilot nozzle 206 includes a plurality of premix passages 234 that extend substantially axially through the pilot nozzle 206. Each premix passage 234 includes an inlet 236 that is defined and/or disposed along the upstream end portion 226 of the pilot nozzle 206 and an outlet 238 that is defined and/or disposed along the downstream end portion 228 of the pilot nozzle 206. The outlet 238 is formed downstream from the inlet 236. In particular embodiments, the plurality of premix passages 234 is annularly arranged about the centerline 204 of the fuel nozzle assembly 200 between the inner wall 230 and the outer wall 232 of the pilot nozzle 206. Each premix passage 234 includes at least one fuel port 240 defined between the inlet 236 and outlet 238 of the corresponding premix passage 234.
In various embodiments, as shown in
The pilot air passage 242 may be defined between an outer surface 248 of the intermediate tube 246 and the inner surface 222 of the center body 202. In particular embodiments, a downstream end 250 of the intermediate tube 246 is sealed and/or fixedly connected to the upstream end portion 226 of the pilot nozzle 206. In one embodiment, the downstream end 250 of the intermediate tube 246 is sealed and/or fixedly connected to the upstream end portion 226 of the pilot nozzle 206 radially inwardly from the inlets 236 of the premix passages 234. In various embodiments, as shown in
In particular embodiments as shown in
In particular embodiments, as shown in
In particular embodiments, as shown in
In operation, as shown collectively in
The fuel nozzle assemblies 100, 200 as provided herein provide for various technical advantages over existing fuel nozzle assemblies which incorporate pilot nozzles. For example, the inner tube or cartridge 152, 252 and the intermediate tube 146, 246 create passages required to provide the pilot air 164, 264 and pilot fuel 166, 266 to the pilot nozzle 106, 206. The expansion member 260 in fuel nozzle assembly 200 accounts for thermal expansion due to temperature differences in the pilot air 264 and the pilot fuel 266. With regards to fuel nozzle assembly 100, the outer wall 132 of the pilot nozzle 106 may slide or move relative to the center body 102 to account for thermal expansion due to temperature differences in the pilot air 164 and the pilot fuel 166. In addition, the pilot nozzle 106, 206 may be removed from the center body 102, 202 to allow for repair and/or replacement of the pilot nozzle 106, 206.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other and examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4100733 | Striebel et al. | Jul 1978 | A |
4589260 | Krockow | May 1986 | A |
4850194 | Fuglistaller | Jul 1989 | A |
4890453 | Iwai | Jan 1990 | A |
4982570 | Waslo et al. | Jan 1991 | A |
5199265 | Borkowicz | Apr 1993 | A |
5235814 | Leonard | Aug 1993 | A |
5263325 | McVey et al. | Nov 1993 | A |
5675971 | Angel et al. | Oct 1997 | A |
5755090 | Hu | May 1998 | A |
5901555 | Mandai et al. | May 1999 | A |
6298667 | Glynn et al. | Oct 2001 | B1 |
6363724 | Bechtel | Apr 2002 | B1 |
6438961 | Tuthill et al. | Aug 2002 | B2 |
6446439 | Kraft et al. | Sep 2002 | B1 |
6609380 | Mick et al. | Aug 2003 | B2 |
6857271 | Kraft et al. | Feb 2005 | B2 |
7007477 | Widener | Mar 2006 | B2 |
7854121 | Vandale et al. | Dec 2010 | B2 |
8240150 | Varatharajan et al. | Aug 2012 | B2 |
8347631 | Bailey et al. | Jan 2013 | B2 |
8919673 | Subramanian et al. | Dec 2014 | B2 |
9297535 | Uhm et al. | Mar 2016 | B2 |
20050229600 | Kastrup | Oct 2005 | A1 |
20090165436 | Herbon et al. | Jul 2009 | A1 |
20090223228 | Romoser | Sep 2009 | A1 |
20100031661 | Varatharajan et al. | Feb 2010 | A1 |
20100084490 | Zuo et al. | Apr 2010 | A1 |
20100293954 | Widener | Nov 2010 | A1 |
20100293955 | Berry et al. | Nov 2010 | A1 |
20100319353 | Intile | Dec 2010 | A1 |
20110005229 | Venkataraman et al. | Jan 2011 | A1 |
20110162371 | Khan et al. | Jul 2011 | A1 |
20110252803 | Subramanian et al. | Oct 2011 | A1 |
20120073302 | Myers et al. | Mar 2012 | A1 |
20120096866 | Khan et al. | Apr 2012 | A1 |
20120167586 | Bailey et al. | Jul 2012 | A1 |
20120192565 | Tretyakov et al. | Aug 2012 | A1 |
20130219899 | Uhm et al. | Aug 2013 | A1 |
20130219903 | Koizumi et al. | Aug 2013 | A1 |
20130306181 | Mitchell et al. | Nov 2013 | A1 |
20130312422 | Westmoreland et al. | Nov 2013 | A1 |
20140041389 | Kajimura et al. | Feb 2014 | A1 |
20140190168 | Shershnyov | Jul 2014 | A1 |
20150159875 | Berry et al. | Jun 2015 | A1 |
20160313006 | Stewart | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2405201 | Jan 2012 | EP |
2693123 | Feb 2014 | EP |
WO 2014081334 | May 2014 | WO |
Entry |
---|
U.S. Non-Final Office Action issued in connection with related U.S. Appl. No. 14/102,846 dated Mar. 24, 2016. |
U.S. Notice of Allowance issued in connection with related U.S. Appl. No. 14/102,846 dated Jul. 6, 2016. |
European Search Report and Opinion issued in connection with corresponding EP Application No. 16165555.0 dated Sep. 13, 2016. |
GB Search Report and Opinion issued in connection with corresponding GB Application No. 1606106.1 dated Oct. 13, 2016. |
U.S. Non-Final Office Action issued in connection with related U.S. Appl. No. 14/555,143 dated Nov. 31, 2016. |
Copending U.S. Appl. No. 14/555,074, Michael Christopher Gibson, filed Nov. 26, 2014. |
Copending U.S. Appl. No. 14/555,143, Jason Thurman Stewart, filed Nov. 26, 2014. |
Co-pending U.S. Appl. No. 15/221,747, Berry et al., filed Jul. 28, 2016. |
Number | Date | Country | |
---|---|---|---|
20160305668 A1 | Oct 2016 | US |