The present invention relates generally to liquid-atomizing spray nozzles, and more particularly to an air-assisted or “airblast” fuel nozzle for turbine combustion engines, the nozzle having a multiplicity of aerodynamic turning vanes arranged to define an outer air “swirler” providing for a more uniform atomization of the fuel flow stream.
Liquid atomizing nozzles are employed, for example, in gas turbine combustion engines and the like for injecting a metered amount of fuel from a manifold into a combustion chamber of the engine as an atomized spray of droplets for mixing with combustion air. The fuel is supplied at a relatively high pressure from the manifold into, typically, an internal swirl chamber of the nozzle which imparts a generally helical component vector to the fuel flow. The fuel flow exits the swirl chamber and is issued through a discharge orifice of the nozzle as a swirling, thin, annular sheet of fuel surrounding a central core of air. As the swirling sheet advances away from the discharge orifice, it is separated into a generally-conical spray of droplets, although in some nozzles the fuel sheet is separated without swirling.
In basic construction, fuel nozzle assemblies of the type herein involved are constructed as having an inlet fitting which is configured for attachment to the manifold of the engine, and a nozzle or tip which is disposed within the combustion chamber of the engine as having one or more discharge orifices for atomizing the fuel. A generally tubular stem or strut is provided to extend in fluid communication between the nozzle and the fitting for supporting the nozzle relative to the manifold. The stem may include one or more internal fuel conduits for supplying fuel to one or more spray orifices defined within the nozzle. A flange may be formed integrally with the stem as including a plurality of apertures for the mounting of the nozzle to the wall of the combustion chamber. Appropriate check valves and flow dividers may be incorporated within the nozzle or stem for regulating the flow of fuel through the nozzle. A heat shield assembly such as a metal sleeve, shroud, or the like additionally is included to surround the portion of the stem which is disposed within the engine casing. The shield provides a thermal barrier which insulates the fuel from carbonization or “choking,” the products of which are known to accumulate within the orifices and fuels passages of the nozzle and stem resulting in the restriction of the flow of fuel therethrough.
Fuel nozzles are designed to provide optimum fuel atomization and flow characteristics under the various operating conditions of the engine. Conventional nozzle types include simplex or single orifice, duplex or dual orifice, and variable port designs of varying complexity and performance. Representative nozzles of these types are disclosed, for example, in U.S. Pat. Nos. 3,013,732; 3,024,045; 3,029,029; 3,159,971; 3,201,050; 3,638,865; 3,675,853; 3,685,741; 3,899,884; 4,134,606; 4,258,544; 4,425,755; 4,600,151; 4,613,079; 4,701,124; 4,735,044; 4,854,127; 4,977,740; 5,062,792; 5,174,504; 5,269,468; 5,228,283; 5,423,178; 5,435,884; 5,484,107; 5,570,580; 5,615,555; 5,622,054; 5,673,552; and 5,740,967.
As issued from the nozzle orifice, the swirling fluid sheet atomizes naturally due to high velocity interaction with the ambient combustion air and to inherent instabilities in the fluid dynamics of the vortex flow. However, the above-described simplex or duplex nozzles also may be used in conjunction with a stream of high velocity and/or high pressure air, which may be swirling, applied to one or both sides of the fluid sheet. In certain applications, the air stream may improve the atomization of the fuel for improved performance. Depending upon whether the air is supplied from a source external or internal to the engine, these “air-atomizing” nozzles which employ an atomization air stream are termed “air-assisted” or “airblast.” Airblast and air-assisted nozzles have been described as having an advantage over what are termed “pressure” atomizers in that the distribution of the fluid droplets through the combustion zone is dictated by a airflow pattern which remains fairly constant over most operations conditions of the engine. Nozzles of the airblast or air-assisted type are described further in U.S. Pat. Nos. 3,474,970; 3,866,413; 3,912,164; 3,979,069; 3,980,233; 4,139,157; 4,168,803; 4,365,753; 4,941,617; 5,078,324; 5,605,287; 5,697,443; 5,761,907; and 5,782,626.
Most, if not all, of the aforementioned nozzle designs incorporate swirlers or other turning vanes to impart a generally helical motion to one or more of the fluid flow streams within the nozzle. For example, certain airblast nozzles employ an outer air swirler configured on the surface of a generally-annular member which forms the primary body of the nozzle. In this regard, the body has an inlet orifice and outlet orifice or discharge for the flow of inner air and fuel streams. A series of spaced-apart, parallel turning vanes are provided on a radial outer surface of the body as disposed circumferentially about the discharge orifice. As incorporated into the nozzle, the primary nozzle body is coaxially disposed within a surrounding, secondary nozzle body or shroud such that the radial outer surface of the primary nozzle body defines an annular conduit with a concentric inner surface of the secondary nozzle body for the flow of an outer, atomizing air stream. As each of the vanes is disposed at an angle relative to the central longitudinal axis of the swirler and the direction of air flow, a helical motion is imparted to the atomizing air which exits the nozzle as a swirling stream.
Particularly with respect to airblast or air-assisted nozzles of the type herein involved, the ability to produce a desired fuel spray which is finely atomized into droplets of uniform size is dependent upon the preparation of the atomizing air flow upstream of the atomization point. That is, excessive pressure drop or other loss of velocity in the atomization air can result in larger droplets and a coarser fuel spray. Large or non-uniform droplets also can result from a non-uniform velocity profile or other gradients such as wakes and eddies in the atomizing air flow.
Heretofore, air swirlers of the type herein involved have employed vanes of relatively simple slots or flats, or helical or curved geometries to guide and control fluid flow. In certain applications, however, slots or vanes of these types may provide less than optimum performance. In this regard, reference may be had to
As may be seen in the schematic of
Turning next to
As compared to that of the helical vanes of
In view of the foregoing, it will be appreciated that improvements in the design of fuel nozzles for turbine combustion engines and the like would be well-received by industry. A preferred design would ensure a uniform atomization profile under a range of operating conditions of the engine.
The present invention is directed principally to airblast or air-assisted fuel nozzles for dispensing an atomized fluid spray into the combustion chamber of a gas turbine engine or the like, and particularly to an outer air swirler arrangement for such nozzles having an aerodynamic vane design which minimizes non-uniformities, such as separation, pressure drop, azimuthal velocity gradients, and secondary flows in the atomizing air flow. The swirler arrangement of the present invention thereby produces a relatively uniform, regular flow downstream of the vanes which minimizes entropy generation and energy losses and maximizes the volume or mass flow rate of air through the vane passages. Without being bound by theory, it is believed that, as the velocity and total pressure of the swirling atomizing air as it impinges the annular liquid sheet is substantially uniform, the formation of large droplets in the atomized sheet is minimized. Moreover, as the velocity of the atomizing air is higher due to reduced total pressure losses, the formation of small droplets is believed to be facilitated. The overall result is that the atomization performance of a given nozzle may be enhanced to provide a smaller mean droplet size over the full range of turning angles typically specified for turbine combustion engines. Equivalently, less atomization air is required to achieve a specified droplet size.
As the name implies, the “aerodynamic” vanes of the present invention are characterized as having the general shape of an airfoil with a leading edging and a trailing edge, and are arranged radially about the outer circumference of the swirler such that the trailing edge surfaces of adjacent vanes are generally parallel. As is shown in U.S. Pat. Nos. 5,588,824; 5,351,477; 5,511,375; 5,394,688; 5,299,909; 5,251,447; 4,246,757; and 2,526,410, aerodynamic vanes have been utilized for turbine blades, and within the nozzle or combustion chamber to direct the flow of combustion air. Heretofore, however, it was not appreciated that such vanes also might be used to guide the flow of atomizing air in airblast nozzles. Indeed, it was not expected that the atomization performance of existing airblast nozzles could be rather dramatically improved while still satisfying such constraints as structural integrity, envelope size, and manufacturability at a reasonable cost.
In an illustrated embodiment, the air-atomizing fuel nozzle of the invention is provided as including a body assembly with an inner fuel passage and an annular outer atomizing air passage. The inner fuel passage extends axially along a longitudinal axis to a first terminal end defining a first discharge orifice of the nozzle. The outer atomizing air passage extends coaxially with the inner fuel passage along the longitudinal axis to a second terminal end disposed concentrically with the first terminal end and defining a second discharge orifice oriented such that the discharge therefrom impinges on the fuel discharge from the first discharge orifice. An array of turning vanes is disposed within the outer atomizing air passage in a circular locus about the longitudinal axis. Each of the vanes is configured generally in the shape of an airfoil and has a pressure side and an opposing suction side. The vanes extend axially from a leading edge surface to a tapering trailing edge surface along a corresponding array of chordal axes, each of which axes is disposed at a given turning angle to the longitudinal axis. The suction side of each vane is spaced-apart from a juxtaposing pressure side of an adjacent vane to define a corresponding one of a plurality of aligned air flow channels therebetween.
In operation, a fuel flow is directed through the inner fuel passage with atomizing air flow being directed through the flow channels of the outer air passage. Fuel is discharged into the combustion chamber of the engine from the first discharge orifice and as a generally annular sheet, with atomizing air being discharged from the second discharge orifice flow as a surrounding swirl which impinges on the fuel sheet. As a result of the uniform velocity profile developed in the swirl by the effect of the aerodynamic turning vanes, the sheet is atomized into a spray of droplets of more uniform size.
The present invention, accordingly, comprises the apparatus and method possessing the construction, combination of elements, and arrangement of parts and steps which are exemplified in the detailed disclosure to follow. Advantages of the present invention include an airblast or air-assisted nozzle construction which provides for a reduction in the mean droplet size in the liquid spray, and which utilizes less atomizing air to effect a specified droplet size. Additional advantages include an airblast or air-assisted nozzle which provides consistent atomization over a full range of turning angles and a wide range of engine operating conditions.
These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:
These drawings are described further in connection with the following Detailed Description of the Invention.
Certain terminology may be employed in the following description for convenience rather than for any limiting purpose. For example, the terms “forward,” “rearward,” “right,” “left,” “upper,” and “lower” designate directions in the drawings to which reference is made, with the terms “inward,” “inner,” or “inboard” and “outward,” “outer,” or “outboard” referring, respectively, to directions toward and away from the center of the referenced element, the terms “radial” and “axial” referring, respectively, to directions or planes perpendicular and parallel to the longitudinal central axis of the referenced element, and the terms “downstream” and “upstream” referring, respectively, to directions in and opposite that of fluid flow. Terminology of similar import other than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience rather than in any limiting sense.
For the purposes of the discourse to follow, the precepts of the nozzle and the aerodynamically-vaned outer swirler thereof are described in connection with the utilization of such swirler within a nozzle of an airblast variety. It will be appreciated, however, that aspects of the present invention may find application in other nozzle, including air-assisted types and the like which utilize an outer flow of atomization air. Use within those such other nozzles therefore should be considered to be expressly within the scope of the present invention.
Referring to the figures wherein corresponding reference characters are used to designate corresponding elements throughout the several views shown with equivalent elements being referenced with prime or sequential alphanumeric designations, depicted generally at 30 in
Nozzle 40 extends into chamber 34 from an external inlet end, 46, to an internal discharge end or tip end, 48, which extends along a central longitudinal axis, 49. Inlet end 46 has a fitting, 50, for connection to one or more sources of pressurized fuel and other fluids such as water. A tubular stem or strut, 52, is provided to extend in fluid communication between the inlet and tip ends 46 and 48 of nozzle 10. Stem 52 may be formed as including one or more internal fluid conduits (not shown) for supplying fuel and other fluids to one or more spray orifices defined within tip end 48.
Referring now to
Conduit member 62 is configured as having a circumferential outer surface, 68, and a circumferential inner surface, 70, and extends along central axis 49 from a rearward or upstream end, 72, to a forward or downstream end, 74. As is shown, upstream end 72 may be internally threaded as at 75, with downstream end 74 which terminating to define a generally circular first discharge orifice, 76.
First shroud member 64, also having an outer surface, 78, and an inner surface, 80, likewise extends along central axis 49 from an upstream end, 82, to a downstream end, 84, which terminates to define a second discharge orifice, 86, disposed generally concentric with first discharge orifice 76. Optionally, the downstream end 84 of first shroud member 64 may be provided to extend forwardly beyond first discharge orifice 76 and radially inwardly thereof in defining an angled surface, 87, which confronts first discharge orifice 76 for the prefilming of the atomizing spray 24 (
Second discharge orifice 86 thus is defined between the conduit member outer surface 68 and the inner surface 80 of first shroud member 64 as a generally annular opening which, depending upon the presence of prefilming surface 87, may extend either radially circumferentially about or inwardly of primary discharge orifice 46. A third discharge orifice, 88, similarly is defined concentrically with second discharge orifice 86 between an inner surface, 90, of second shroud member 66. Second shroud member 66, which also has an outer surface, 91, likewise extends coaxially with first shroud member 64 along central axis 49 intermediate an upstream end, 92, and a downstream end, 94.
With body assembly 60 being constructed as shown and described, an arrangement of concentric fluid passages is defined internally within nozzle 40 as extending mutually concentrically along axis 49 for the flow of fuel and air fluid components. In this regard, a first or primary atomizing air passage, 96, is annularly defined intermediate the first shroud member inner surface 80 and the outer surface 68 of conduit member 62, with a second or secondary atomizing air passage, 98, being similarly annularly defined intermediate first shroud member outer surface 78 and second shroud member inner surface 90. An inner, i.e., central, fuel passage, 100, is defined by the generally cylindrical inner surface 70 of conduit 62 to extend coaxially through the first and second outer atomizing air passages 96 and 98. Each of passages 96, 98, and 100 extend to a corresponding terminal end which defines the respective first, second, and third discharge orifices 76, 86, and 88. As may be seen, the terminal ends of the first and second outer atomizing air passage 96 and 98 are angled radially inwardly or otherwise oriented such that the discharge therefrom is made to impinge, i.e., intersect, the discharge from inner fuel passage 100.
An array of first turning vanes, one of which is referenced in phantom at 102, is disposed within passage 96, with an array of second turning vanes, one of which is referenced in phantom at 104, being similarly disposed within passage 98. Each of the arrays of vanes 102 and 104 is arranged in a circular locus relative to axis 49, and is configured to impart a helical or similarly vectored swirl pattern to the corresponding first or second atomizing air flow, designed by the streamlines 106 and 108, respectively, being directed through the associated passage 96 or 98.
With additional reference to the several views of conduit member 62 shown in
Referring next particularly to
For imparting a helical or turning vector to the air flow 106 such that the flow is made to be discharged from orifice 86 (
Further in the illustrative embodiment of
Although not considered critical to the precepts of the invention herein involved, the shape of vanes 102 further may be optimized for the envisioned application using known mathematical modeling techniques wherein the vane surface is “parmetrized.” The level of fidelity of the mathematical model can be anywhere from a two-dimensional potential flow, i.e., ideal flow with no losses, up to a full three-dimensional, time-accurate model that includes all viscous effects. For a fuller appreciation of such modeling techniques, reference may be had to: Jameson et al., “Optimum Aerodynamic Design Using the Navier-Stokes Equations,” AIAA 97-0101, 35th Aerospace Sciences Meeting & Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nev. (January 1997); Reuther et al., “Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers,” American Institute of Aeronautics and Astronautics (1997); Dang et al., “Development of an Advanced 3-Dimensional & Viscous Aerodynamic Design Method for Turbomachine Components in Utility & Industrial Gas Turbine Applications,” South Carolina Energy Research & Development Center (1997); Sanz, “Lewis Inverse Design Code (LINDES),” NASA Technical Paper 2676 (March 1987); Sanz et al., “The Engine Design Engine: A Clustered Computer Platform for the Aerodynamic Inverse Design and Analysis of a Full Engine,” NASA Technical Memorandum 105838 (1992); Ta'asan, “Introduction to Shape Design and Control,” Carnegie Mellon University; Oyama et al., “Transonic Wing Optimization Using Genetic Algorithim,” AIAA 97-1854, 13th Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Snowmass Village, Colo. (June 1997); Vicini et al., “Inverse and Direct Airfoil Design Using a Multiobjective Genetic Algorithm,” AIAA Journal, Vol. 35, No. 9 (September 1997); Elliot et al., “Aerodynamic Optimization on Unstructured Meshes with Viscous Effects,” AIAA 97-1849, 13th AIAA CFD Conference, American Institute of Aeronautics and Astronautics, Snowmass Village, Colo. (June 1997); Trosset et al., “Numerical Optimization Using Computer Experiments,” ICASE Report No. 97-38 (August 1997); and Sanz, “On the Impact of Inverse Design Methods to Enlarge the Aero Design Envelope for Advanced Turbo-Engines,” NASA Lewis Research Center.
Returning to
Materials of construction for the components forming nozzle 40 of the present invention are to be considered conventional for the uses involved. Such materials generally will be a heat and corrosion resistant, but particularly will depend upon the fluid or fluids being handled. A metal material such as a mild or stainless steel, or an alloy thereof, is preferred for durability, although other types of materials may be substituted, however, again as selected for compatibility with the fluid being transferred. Packings, O-rings, and other gaskets of conventional design may be interposed where necessary to provide a fluid-tight seal between mating elements. Such gaskets may be formed of any elastomeric material, although a polymeric material such as Viton® (copolymer of vinylidene fluoride and hexafluoropropylene, E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.) is preferred.
In operation, an annular fuel flow, referenced in phantom at 140 in
The improved atomization performance of nozzle 40 of the present invention becomes apparent with reference to
Referring next to
Swirler 200, which is received coaxially within the conduit inner member 62b, is configured as having a circumferential outer surface, 220, and a circumferential inner surface, 222. As with the members 62, 64, and 66, swirler 200 extends along central axis 49 from a rearward or upstream portion, 224, to a forward or downstream end, 226, which terminates to define a generally circular discharge orifice, 228, disposed generally concentric with the other discharge orifices 76′, 86, and 88, and, typically, at an upstream position relative thereto.
With swirler 200 being positioned as shown and described, fuel passage 100, referenced now at 100′, thus may be defined as an annulus between the inner circumferential surface 202 of inner member 62b and the outer circumferential surface 220 of swirler 200. Passage 100′ extends along axis 49 concentric with the passages 96 and 98, and into fluid communication with the orifice 76′. The swirler inner circumferential surface 222, in turns, defines an innermost air passage, referenced at 230, which extends along axis 49 concentric with passages 96, 98, and 100′, and into fluid communication with the orifice 228 for the flow of air which is again represented by the streamlines 144. As with the terminal ends of the first and second outer atomizing air passage 96 and 98, the end of the fuel passage 100′ similarly may be angled radially inwardly or otherwise oriented such that the discharge therefrom is made to impinge, i.e., intersect, the air discharge from the passage 230.
In further accordance with the precepts of the present invention, another array of turning vanes, referenced in phantom at 240, may be disposed within passage 100′. As with the vanes 102 and 104, the vanes 240 may be arranged in a circular locus relative to axis 49, and as configured to impart a helical or similarly vectored swirl pattern to the fuel flow, again designed by streamlines 142, being directed through the passage 100′. The vanes 240, moreover, may be defined within the passage 100′ as formed in or on the outer surface 220 of the swirler, and as aerodynamically configured in the airfoil shape described hereinbefore in connection with vanes 102. In such configuration, the vanes 240 form a plurality of aligned fuel flow channels therebetween such that the liquid or other fuel flow may be made to be discharged from orifice 76′ as a vortex or other “swirling” pattern having characteristics substantially the same as or similar to those described in connection with the atomizing air flow from the orifice 86.
In operation, with the passage 100′ being connected, such as via a duct or the like (not shown) to a fuel source, and with the passages 96, 98, and 230 being connected, also such as via ducts or the like, to one or more air supplies, the air and fuel flows may be directed as shown, severally, by the streamlines 106, 108, 142, and 144. As before, the inner air flow 144 preferably may be further through an additional swirler or plug (not shown) so as to assume a generally helical flow pattern. The fuel flow 142 may be discharged as a generally helical from the orifice 76′, whereupon it may be atomized by the impingement of the inner air flow 144, and the impingement by the outer air flows 106 and 108. With at least the vanes 240 being aerodynamically configured as described, the fuel flow may be discharged as having a generally uniform velocity profile such that the atomization thereof may be effected as a spray of droplets of substantially uniform size. It should be appreciated that the flows need not necessarily be air or fuel alone, but alternatively may be a mixture or other combination of thereof, and further that the terms “air” and “fuel” may be used for purposes of convention, and may describe other gases and liquids, as the case may be.
As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted in as illustrative rather than in a limiting sense. All references including any priority documents cited herein are expressly incorporated by reference.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/091,940, filed Mar. 6, 2002, now U.S. Pat. No. 6,560,964, which is a divisional of U.S. patent application Ser. No. 09/532,534, filed Mar. 22, 2000, now U.S. Pat. No. 6,460,344, which claims priority to and U.S. Provisional Application Ser. No. 60/133,109, filed May 7, 1999, the disclosure of each of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2526410 | Price | Oct 1950 | A |
3013732 | Webster et al. | Dec 1961 | A |
3024045 | Cleminshaw et al. | Mar 1962 | A |
3029029 | Webster | Apr 1962 | A |
3159971 | Hoebius et al. | Dec 1964 | A |
3201050 | Simmons et al. | Aug 1965 | A |
3474970 | Simmons et al. | Oct 1969 | A |
3638865 | McEneny et al. | Feb 1972 | A |
3675853 | Lapera | Jul 1972 | A |
3685741 | O'Sickey | Aug 1972 | A |
3866413 | Sturgess | Feb 1975 | A |
3899884 | Ekstedt | Aug 1975 | A |
3912164 | Lefebvre et al. | Oct 1975 | A |
3979069 | Garofalo | Sep 1976 | A |
3980233 | Simmons et al. | Sep 1976 | A |
4134606 | Menti, Jr. | Jan 1979 | A |
4139157 | Simmons | Feb 1979 | A |
4168803 | Simmons et al. | Sep 1979 | A |
4246757 | Heberling | Jan 1981 | A |
4258544 | Gebhart et al. | Mar 1981 | A |
4365753 | Harding et al. | Dec 1982 | A |
4425755 | Hughes | Jan 1984 | A |
4600151 | Bradley | Jul 1986 | A |
4613079 | Mains | Sep 1986 | A |
4701124 | Maghon et al. | Oct 1987 | A |
4735044 | Richey et al. | Apr 1988 | A |
4845940 | Beer | Jul 1989 | A |
4854127 | Vinson et al. | Aug 1989 | A |
4941617 | Russell | Jul 1990 | A |
4977740 | Madden et al. | Dec 1990 | A |
5062792 | Maghon | Nov 1991 | A |
5078324 | DuBell et al. | Jan 1992 | A |
5174504 | Halvorsen | Dec 1992 | A |
5228283 | Sciocchetti | Jul 1993 | A |
5251447 | Joshi et al. | Oct 1993 | A |
5299909 | Wulf | Apr 1994 | A |
5351477 | Joshi et al. | Oct 1994 | A |
5394688 | Amos | Mar 1995 | A |
5423178 | Mains | Jun 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5484107 | Holmes | Jan 1996 | A |
5511375 | Joshi et al. | Apr 1996 | A |
5570580 | Mains | Nov 1996 | A |
5588824 | McMillan | Dec 1996 | A |
5605287 | Mains | Feb 1997 | A |
5615555 | Mina | Apr 1997 | A |
5622054 | Tingle | Apr 1997 | A |
5673552 | Idleman et al. | Oct 1997 | A |
5697553 | Stotts | Dec 1997 | A |
5735117 | Toelle | Apr 1998 | A |
5737921 | Jones et al. | Apr 1998 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5761907 | Pelletier et al. | Jun 1998 | A |
5782626 | Joos et al. | Jul 1998 | A |
6460340 | Chauvette et al. | Oct 2002 | B1 |
20020134084 | Mansour et al. | Sep 2002 | A1 |
20040040310 | Prociw et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20030196440 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60133109 | May 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09532534 | Mar 2000 | US |
Child | 10091940 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10091940 | Mar 2002 | US |
Child | 10421560 | US |