The present disclosure relates generally to a turbine engine and, more specifically, to a fuel nozzle with an improved liquid cartridge.
Mixing liquid fuel and air affects engine performance and emissions in a variety of engines, such as turbine engines. For example, a turbine engine may employ one or more fuel nozzles to facilitate fuel-air mixing in a combustor. Each fuel nozzle may include a liquid cartridge to enable distribution and mixing of the liquid fuel and air in the combustor. The liquid cartridge may include a tip portion, a central body, and a flange configured to couple to fuel, air, and water supplies. Unfortunately, the configuration of the tip and its component may cause flow disruption and wear that may require replacement and/or maintenance of the liquid cartridge. Further, the configuration of the central body requires support in the chambers of the body as fluid flows through it. The central body can require a special alignment with respect to the tip, due to supports within the central body as well, increasing complexity of the liquid cartridge. In addition, the flange may have a plurality of components that lead to increased complexity and cost. As a result, the liquid cartridge may have increased costs due to complexity of the assembly and maintenance due unwanted wear and tear.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In a first embodiment, a system includes a liquid cartridge configured to mount in a fuel nozzle of a turbine engine, wherein the liquid cartridge includes an atomizing air tip, a water tip disposed coaxially within the atomizing air tip, and a fuel tip disposed coaxially within the water tip. The liquid cartridge also includes a shroud disposed coaxially between the atomizing air tip and the water tip, wherein the shroud is fixedly secured to the atomizing air tip and a fuel insert disposed coaxially within the fuel tip, wherein the fuel insert comprises an upstream end portion that radially expands in a downstream axial direction of flow through the liquid cartridge.
In a second embodiment, a system includes a liquid cartridge configured to mount in a fuel nozzle of a turbine engine. The liquid cartridge includes a standoff radially separating coaxial tubes of the liquid cartridge, wherein the standoff defines a plurality of equal sized channels between the coaxial tubes, and the standoff is symmetrical about a central axis of the liquid cartridge.
In a third embodiment, a system includes an end cover and a liquid cartridge. The liquid cartridge is configured to mount in a fuel nozzle of a turbine engine, wherein the liquid cartridge comprises a one piece flange configured to couple to the end cover, wherein the flange comprises a water inlet, an air inlet, and a fuel inlet.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As discussed in detail below, various embodiments of liquid cartridges for turbine fuel nozzles may be employed to improve the performance of a turbine engine. The liquid cartridges may be placed inside a turbine fuel nozzle and may be coupled to an end cover of a combustor to enable use of liquid fuel within a turbine system. For example, embodiments of the liquid cartridges may include an improved tip portion, wherein a shroud is fixedly secured to an atomizing air tip to reduce backflow and wear. Further, the tip portion includes a fuel tip insert configured to improve fuel flow through the fuel tip. Specifically, the fuel tip insert expands radially in a downstream direction, thereby enabling a smooth flow of fuel through the liquid cartridge. In an embodiment, the liquid cartridge includes standoffs or spacers in a central body configured to increase rigidity of the liquid cartridge and reduce complexity of the liquid cartridge. For example, the standoffs may have a square shaped cross section that is symmetrical about an axis of the central body. The standoffs create four equal sized channels that enable flow of water and/or air to the liquid cartridge tip portion. Further, the standoffs enable the central body to be connected to the tip portion without regard to the rotational orientation of the standoffs, simplifying the manufacturing of the liquid cartridge. In certain embodiments, the liquid cartridge includes a flange that is a single piece that includes an air inlet, water inlet, and fuel inlet. The single piece flange may be made of a cast alloy, simplifying the manufacturing process and reducing the cost of separate components. Further, the single piece flange improves durability by reducing components within the flange. The disclosed embodiments increase performance and durability while decreasing complexity and manufacturing costs for the liquid cartridge.
A detailed view of an embodiment of combustor 16, as shown
Similarly, a water tube 90 may be located outside of, and concentric to, the fuel tube 86. In addition, a water cavity 92, located between the water tube 90 and the fuel tube 86 enables fluid communication of water from the water inlet 84 to the tip portion 72. Further, the water is injected from the tip portion 72 into the combustion zone to add mass to the combustion fluids resulting in an increase in overall combustion turbine power. As discussed in detail below, the water cavity 92 may have standoffs 100 located in the center of the central body 74, between the walls of the fuel tube 86 and water tube 90, to improve the structural rigidity of the liquid cartridge 70.
In addition, an air tube 94 may be located outside of, and concentric to, the water tube 90. An air cavity 96 may be located between the air tube 94 and water tube 90, thereby enabling fluid communication of air from the air inlet 82 to the tip portion 72 for injection into the combustion zone. Further, the air cavity 96 may have standoffs 102 or other structural supports, centrally located within the central body 74, configured to provide structural rigidity and re-enforcement between the walls of the air tube 94 and the water tube 90.
As depicted, the air, water, and fuel may flow in a downstream direction 98 toward the tip portion 72 for injection through the fuel nozzle 12 into the turbine's combustor 16, thereby enabling combustion to drive the turbine engine 10. As illustrated, the air, water, and fuel flows are generally coaxial or concentric with one another due to the coaxial or concentric arrangement of tubes 86, 90, and 94. Likewise, standoffs 100 and 102 are coaxial or concentric with one another at the same axial position or at different axial positions. The standoffs 100 and 102 improve rigidity in the liquid cartridge 70 and also reduce resonance and/or bending of the cartridge in response to forces. Specifically, the stand offs 100 and 102 increase the tube assembly (86, 90, and 94) stiffness and change the frequency response of the liquid cartridge 70 assembly. In one embodiment, the standoffs 100 and 102 shift the liquid cartridge resonant frequencies away from the principle machine rotor driving frequencies. Accordingly, the standoffs 100 and 102 increase durability and performance of the liquid cartridge 70. The standoffs 100 and 102 may also be referred to as spacers, wherein the standoffs or spacers provide structural support for the liquid cartridge 70 while enabling fluid passage through chambers of the cartridge. In an embodiment, the inner standoff 100 and outer standoff 102 are located at the same axial position near the middle of the central body 74, to improve support within the cavities of the liquid cartridge 70. In other embodiments, the standoffs 100 and 102 may be located at multiple axial locations, wherein the axial location of standoffs 100 and 102 are either the same or different. For example, the liquid cartridge 70 may include 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 standoffs 100 and 102 spaced at equally spaced axial positions. The number, size and locations of the standoffs may depend on the length of the liquid cartridge 70 and the standoffs themselves, as well as operating conditions. As depicted, the liquid cartridge 70 may be a relatively shorter length than other cartridges, and therefore may only include one standoff 100 and one standoff 102. The standoffs 100 and 102 may be aligned, as depicted, or oriented differently within the tubes 94 and 90. Further, the design of the central body 74 enables improved rigidity for the liquid cartridge 70, thereby improving durability and performance.
In some embodiments, the inner standoff 100 and outer standoff 102 may be of different shapes, including a simple polygon, triangle, a pentagon, a hexagon, or other geometric shape configured to support the cavities within central body 74. Standoffs 100 and 102 may have the same or different shapes, e.g., square and triangle, square and pentagon, square and hexagon, pentagon and triangle, pentagon and hexagon, and so forth. Further, the inner standoff 100 and outer standoff 102 may not be aligned in other embodiments.
The symmetrical configuration of the inner standoff 100 and outer standoff 102 enable the central body 74 to be orientation independent of adjacent liquid cartridge 70 components, including the tip portion 72. The central body 74 may be orientation independent with respect to its rotational orientation about central axis or center point 105. Specifically, the inner standoff 100 and outer standoff 102 enable the central body 74 to be connected to the tip portion 72 at any rotational orientation without regard to the alignment of the standoffs in relation to the flow and cavities within the liquid cartridge 70. Because of the orientation independent standoffs, the symmetry of the flow cavities created by standoffs 100 and 102 enable a user to assemble the liquid cartridge to adjacent components, such as the tip 72 and flange 76, without regard to the rotational orientation of the liquid cartridge 70. In particular, due to their symmetry, a flow field through the tubes is not impacted by the position of the standoffs 100 and 102. In non-symmetrical embodiments, including one slot or multiple stand offs aligned with one slot, the fluid could create a flow direction that needs to be oriented to the exit flow swirl of the tip. Symmetric standoffs 100 and 102 lead to no flow rotation and thus no impact to flow at exit. In some embodiments, the standoffs 100 and/or 102 may define a non-symmetrical arrangement of flow passages about the center point 105. In such embodiments, the central body 74 may not be orientation independent of adjacent liquid cartridge components. For example, the standoffs 100 and 102 may be C-shaped with a single channel for flow, thereby requiring alignment with respect to the tip portion 72, further complicating assembly and manufacturing.
In addition, a fuel tip 120 may be located coaxially inside the water tip 116, wherein the fuel tip 120 is configured to enable fluid flow and mixing of the liquid fuel flowing in the downstream direction 98 through the fuel tip 120. The fuel tip 120 may also include swozzle holes 122 configured to swirl the water as it flows in the downstream direction 98 into the combustor. The fuel tip 120 includes a cavity for placement of a fuel insert 124 which may be configured to direct the liquid fuel flow toward the combustor and enhance the mixing of the fuel with the air and/or water as it flows out of the tip portion 72. The tip insert 124, includes a smooth, flat face surface 126 (e.g., perpendicular to central axis 105), which is connected to a radially expanding tapered portion 128. As depicted, the flat face surface 126 and radially expanding tapered portion 128 are configured to enable an increase in smooth laminar flow of the liquid fuel in the downstream direction 98 as it passes through the liquid cartridge 70. The tapered portion 128 may have a curved or cone shaped surface that results in a more uniform flow around and through the fuel insert 124. The tapered portion 128 expands radially from the upstream end portion near the face surface 126 to a downstream cylindrical portion 130.
The fuel insert 124 includes a cylindrical portion 130 that has holes or ports 132 to enable fuel flow and swirling within the fuel insert 124 as the fuel travels toward an exit region 134 of the tip portion 72. The geometry of the fuel insert 124 may improve atomization and create a swirling in the fuel flow to improve mixing and combustion. As depicted, the fuel ports 132 are tangentially angled with respect to the axis 105 through the center of the fuel tip 72, thereby enabling a swirling of the fuel as it flows through the ports 132. Further, the fuel ports may also be slightly angled in the direction 98 to enable flow toward the exit region 134. Moreover, the atomizing air tip 110, shroud 112, water tip 116, fuel tip 120, and fuel insert 124 may be composed of a durable material, such as a Cobalt based alloy, to withstand the heat and wear that the tip portion is subjected to. In the embodiment, the liquid fuel, air, and water may be mixed in the exit region 134 as the flows of all three fluids may be swirled upon exiting the tip portion 72. In addition, the swirling and mixing fuel, air, and water flow in a direction 136 into the combustor chamber for combustion to drive the turbine engine.
Technical effects of the invention include improved durability of fuel tip portion 72 components due to the improved design, configuration, materials, and coupling mechanisms of the disclosed embodiments. Further, the design and location of standoffs 100 and 102 within central body 74 may improve fluid flow performance and component durability while reducing complexity of the liquid cartridge 70 assembly. In addition, the configuration and design of the flange 76 may reduce manufacturing complexity while improving system durability.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4519769 | Tanaka | May 1985 | A |
4890453 | Iwai et al. | Jan 1990 | A |
4938019 | Angell et al. | Jul 1990 | A |
5224333 | Bretz et al. | Jul 1993 | A |
5228283 | Sciocchetti | Jul 1993 | A |
5259184 | Borkowicz et al. | Nov 1993 | A |
5355670 | Sciocchetti | Oct 1994 | A |
5415000 | Mumford et al. | May 1995 | A |
5505045 | Lee et al. | Apr 1996 | A |
5697553 | Stotts | Dec 1997 | A |
5713205 | Sciocchetti et al. | Feb 1998 | A |
5722230 | Cohen et al. | Mar 1998 | A |
5729968 | Cohen et al. | Mar 1998 | A |
5784875 | Statler | Jul 1998 | A |
5833141 | Bechtel, II et al. | Nov 1998 | A |
5924275 | Cohen et al. | Jul 1999 | A |
6397602 | Vandervort et al. | Jun 2002 | B2 |
6655145 | Boardman | Dec 2003 | B2 |
7000403 | Henriquez et al. | Feb 2006 | B2 |
7104070 | Iasillo et al. | Sep 2006 | B2 |
7165405 | Stuttaford et al. | Jan 2007 | B2 |
7185494 | Ziminsky et al. | Mar 2007 | B2 |
7406827 | Bernero et al. | Aug 2008 | B2 |
7412833 | Widener | Aug 2008 | B2 |
7546735 | Widener | Jun 2009 | B2 |
7661269 | Bonzani et al. | Feb 2010 | B2 |
7757491 | Hessler | Jul 2010 | B2 |
8057220 | Bretz | Nov 2011 | B2 |
20080155987 | Amond et al. | Jul 2008 | A1 |
20090223225 | Kraemer et al. | Sep 2009 | A1 |
20100024425 | Cihlar et al. | Feb 2010 | A1 |
20100242490 | Symonds | Sep 2010 | A1 |
20100294858 | Steinhaus et al. | Nov 2010 | A1 |
20110083441 | Khosla et al. | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100223929 A1 | Sep 2010 | US |