The present application relates generally to gas turbine engines and more particularly relates to a spring support used to position a fuel nozzle within a cap assembly of a turbine combustor.
Gas turbine engines generally include a combustor with a number of fuel nozzles positioned therein in various configurations. For example, a DLN2.6+ (“Dry Low NOx”) combustion system offered by General Electric Corporation of Schenectady, N.Y. provides a six fuel nozzle configuration with a center fuel nozzle surrounded by five outer fuel nozzles. Such a combustion system mixes one or more fuel streams and air streams before entry into a reaction or a combustion zone. Such premixing tends to reduce overall combustion temperatures as well as undesirable emissions such as nitrogen oxides (NOx).
As is known, the fuel nozzles generally include a number of fuel and air tubes mounted onto a flange. In the DLN2.6+ combustion system, the fuel nozzles may be positioned within a cap assembly in a somewhat cantilevered fashion. The combination of the cantilevered structure and the natural frequency of the center fuel nozzles, however, have caused somewhat high amplitude resonance that has resulted in issues with respect to a braised joint between the flange and one of the outer premixed tubes.
Although the design of the fuel nozzle and the cap assembly may be revised to eliminate the issue with the joint, there is a considerable amount of equipment currently operating in the field. There is a desire therefore for systems and methods to dampen or at least to shift the natural frequency of the center fuel tube so as to avoid any issues that may arise with high amplitude resonance. The systems and methods preferably can dampen or shift the natural frequency of the fuel nozzle without extensive equipment replacement or modification costs.
The present application thus provides a fuel nozzle spring support system. The fuel nozzle spring support system may include a fuel nozzle, a cap assembly, and a spring support positioned between the fuel nozzle and the cap assembly.
The present application further provides a method of operating a combustor having a fuel nozzle and a cap assembly. The method may include the steps of sizing a spring support to alter the natural frequency of the fuel nozzle, positioning the spring support between the fuel nozzle and the cap assembly, and operating the fuel nozzle at the altered natural frequency.
The present application further provides a fuel nozzle spring support system. The fuel nozzle spring support system may include a fuel nozzle, a cap assembly, and a spring support positioned between the fuel nozzle and the cap assembly. The spring support may include a hula seal and a collar.
These and other features of the present application will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numbers refer to like elements throughout the several views,
The hula seal 120 provides spring stiffness and dampening to the fuel nozzle spring system 100. As is shown in
The use of the hula seal 120 at the mid-span of the fuel nozzle 60 thus may increase the natural frequency of the nozzle 60. Specifically, the hula seal 120 may raise the first natural frequency of the nozzle 60 from about 150 Hz to above about 230 Hz. Based upon the available space, the hula seal 120 may increase the natural frequency by about four times or more. The hula seal 120 and the stiffness of the seal may be sized to move the natural frequency of the fuel nozzle to a desired range. The hula seal 120 preferably has a stiffness of about 70 klb/in and may range from about 30 klb/in to over about 150 klb/in. The hula seal 120 may be made out of Inconel X750 (a Nickel-Chromium alloy made precipitation hardenable by additions of Aluminum and Titanium, having creep-rupture strength at high temperatures to about 700° C. (1290° F.)) or similar types of materials.
The use of the spring support 110 thus avoids costly retrofitting of the center fuel nozzle 60 and the cap assembly 65. Moreover, the use of the spring support 110 may be retrofitted on site. The spring support 110 likewise may increase the useful lifetime of the fuel nozzle 60.
It should be apparent that the foregoing relates only to certain embodiments of the present application and that numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4285633 | Jones | Aug 1981 | A |
5274991 | Fitts | Jan 1994 | A |
5357745 | Probert | Oct 1994 | A |
6334310 | Sutcu et al. | Jan 2002 | B1 |
6547256 | Aksit et al. | Apr 2003 | B2 |
7082766 | Widener et al. | Aug 2006 | B1 |
20030000216 | Akagi et al. | Jan 2003 | A1 |
20060042269 | Markarian et al. | Mar 2006 | A1 |
20090188255 | Green et al. | Jul 2009 | A1 |
20100018210 | Fox et al. | Jan 2010 | A1 |
20100300116 | Kaleeswaran et al. | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100242493 A1 | Sep 2010 | US |