The application relates generally to gas turbines engines combustors and, more particularly, to fuel nozzles.
Gas turbine engine combustors employ a plurality of fuel nozzles to spray fuel into the combustion chamber of the gas turbine engine. The fuel nozzles atomize the fuel and mix it with the air to be combusted in the combustion chamber. The atomization of the fuel and air into finely dispersed particles occurs because the air and fuel are supplied to the nozzle under relatively high pressures. The fuel could be supplied with high pressure for pressure atomizer style or low pressure for air blast style nozzles providing a fine outputted mixture of the air and fuel may help to ensure a more efficient combustion of the mixture. Finer atomization provides better mixing and combustion results, and thus room for improvement exists.
In one aspect, there is provided a fuel nozzle for a combustor of a gas turbine engine, the fuel nozzle comprising: a body defining an axial direction and a radial direction; an air passageway defined axially in the body, the air passageway having a swirl-inducing relief defined at an exit lip of an outer wall of the air passageway; and a fuel passageway defined axially in the body radially outwardly from the air passageway.
In another aspect, there is provided a gas turbine engine comprising: a combustor; and a plurality of fuel nozzles disposed inside the combustor, each of the fuel nozzles including: a body defining an axial direction and a radial direction; an air passageway defined axially in the body; and a fuel passageway defined axially in the body radially outwardly from the air passageway, the air passageway having a swirl-inducing relief defined at an exit lip of an outer wall of the air passageway, the swirl-inducing relief inducing swirl to pressurised air exiting the air passageway.
In a further aspect, there is provided a method of inducing swirl in an air passageway of a fuel nozzle of a gas turbine engine, the method comprising: carrying pressurised air through a core air passageway in the fuel nozzle; and directing the pressurised air through a swirl-inducing relief and inducing swirl in the pressurised air exiting the air passageway, the swirl-inducing relief being disposed at an exit lip of an outer wall of the air passageway.
Reference is now made to the accompanying figures in which:
Turning now to
The nozzle 100 includes generally a cylindrical body 102 defining an axial direction A and a radial direction R. The body 102 is at least partially hollow and defines in its interior a primary air passageway 103 (a.k.a. core air) and a fuel passageway 106, all extending axially through the body 102.
The air passageway 103 and the fuel passageway 106 are aligned with a central axis 110 of the nozzle 100. The fuel passageway 106 is disposed concentrically around the air passageway 103. The fuel passageway 106 is annular. It is contemplated that the nozzle 100 could include more than one air passageway 103 and/or fuel passageway 106, annular or not. The size, shape, and number of the fuel 106 and air passageway 103 may vary depending on the flow requirements of the nozzle 100, among other factors. The nozzle 100 could, for example, include a secondary passageway around the fuel passageway 106.
The body 102 includes an upstream end (not shown) connected to sources of pressurised fuel and air and a downstream end 114 at which the air and fuel exit. The terms “upstream” and “downstream” refer to the direction along which fuel flows through the body 102. Therefore, the upstream end of the body 102 corresponds to the portion where fuel/air enters the body 102, and the downstream end 114 corresponds to the portion of the body 102 where fuel/air exits.
The primary air passageway 103 is defined by outer wall 103b. The outer wall 103b ends at exit end 115. The primary air passageway 103 carries pressurised air illustrated by arrow 116. The air 116 will be referred interchangeably herein to as “air”, “jet of air”, or “core flow of air”.
The fuel passageway 106 is defined by inner wall 106a and outer wall 106b and carries a fuel film illustrated by arrow 117. The fuel 117 will be referred interchangeably herein to as “fuel” or “fuel film”. In the embodiment shown in the Figures, the inner wall 106a has a helicoidal relief to induce swirl in the fuel film 117. By “swirl”, one should understand any non-streamlined motion of the fluid, e.g. chaotic behavior or turbulence. It is contemplated that the inner wall 106a could be straight and/or could have grooves/ridges to induce swirl in the fuel film 117. It is also contemplated that the outer wall 106b could have grooves/ridges or that the inner wall 106a could be straight.
The fuel passage 106 is typically convergent (i.e. its cross-sectional area) may decrease along its length, from inlet to outlet) in the downstream direction at the downstream end 114. The outer wall 106b of the fuel passageway 106 converging at the downstream end 114 forces the annular fuel film 117 expelled by the fuel passageways 106 onto a jet of air 116 from the primary air passageway 103. The outer wall 106b of the fuel passageway 106 includes a first straight portion 120, a second converging portion 122 extending from a downstream end 126 of the straight portion 120, and a third straight portion 124 extending from a downstream end 128 of the converging portion 122. The third straight portion 124 forms an exit lip 127 of the nozzle 100. The lip exit 127 is disposed downstream relative to the exit end 115 of the primary air passageway 103. A diameter D1 of the outer wall 106b at the third straight portion 124 is slightly bigger than a diameter D2 of the outer wall 103b at the first straight portion 120.
A downstream end portion (or exit lip) 132 of the outer wall 103b of the air passageway 103 includes a surface treatment or swirl-inducing relief in the form of a plurality of grooves 130. The grooves 130 define a plurality of ridges 131 between them. The ridges 131 form abrupt transitions in the outer wall 103b and induce swirl in the core flow of air 116 as it exits the air passageway 103. By inducing swirl to the core air, shearing forces between the fuel film 117 and the air 116 may be increased. The shearing induces better mixing between the air and the fuel, better breakdown of the fuel. In turn, a size of the fuel droplets created may be reduced.
The grooves 130 in the illustrated embodiment are disposed up to the exit end 115 of the air passageway 103 in order to ensure that the air swirling is sustained to a fuel breakdown region FB, right after the exit of the air passageway 103 at about the third straight portion 124.
In the embodiment shown in the Figures, the grooves 130 are circumferential, helicoidal and of round cross-section. It is contemplated that the grooves 130 could have various shapes, for example, the grooves 130 could be axial, circular, of a rectangular cross-section, or of a triangular cross-section. The grooves 130 could be continuous or discontinuous.
The relief of the outer wall 103b may have various aspects, as long as it induces some sort of non-streamline behavior, e.g. turbulence, swirl or chaotic behavior in the air 116. The relief could be right at the exit end 115 of the air passageway 103, as shown in the Figures, or slightly upstream of the exit end 115.
The nozzle 100 may include one or more secondary air passageway(s) sandwiching the fuel film 117 with the core flow of air 116. The secondary air passageway(s) may include grooves similar to the grooves 130 or protrusion/ridges to induce swirl in the secondary stream of air. The grooves may be of the same type (e.g. helicoid) with the same characteristics (e.g. angle of the helix) as the grooves 130 or could be different.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.