This patent application is the U.S. National Stage of International Patent Application No. PCT/EP2016/081910, filed Dec. 20, 2016, which claims the benefit of European Patent Application No. 15201897.4 filed Dec. 22, 2015, which are each incorporated by reference.
The invention relates to a fuel-operated firing device for driving securing elements into a substrate, comprising at least one main combustion chamber for a fuel, a driving piston that can be driven out of the main combustion chamber in a firing direction by means of expandable gases, and a pre-chamber with which an ignition device is associated and in which a pressure acting on the main combustion chamber can build up prior to a fuel-air mixture being ignited in said main combustion chamber. The invention furthermore relates to a method for operating such a firing device.
A fuel-operated firing device for driving securing elements into a substrate is known from German published application DE 10 32 035 A1, comprising at least one main combustion chamber for a fuel, a driving piston mounted in a piston guide, which can be driven out of the main combustion chamber in a firing direction by means of expandable gases, and a pre-chamber, in which a pressure acting on the main combustion chamber can build up prior to a fuel-air mixture being ignited in said main combustion chamber, wherein the pre-chamber is formed by a room inside the piston guide, adjoining the lower side, which faces away from the main combustion chamber, of the driving piston located in its starting position, and wherein the pre-chamber is at least temporarily connected via a passage to the main combustion chamber, wherein a means for detecting the pressure is provided in the main combustion chamber, which means interacts with the ignition device for the main combustion chamber. A gas-operated firing device for securing elements is known from German published application DE 40 10 517 A1, comprising a driving piston which is guided in a working space, and comprising at least one combustion chamber, which adjoins the working space against the working drive direction of the driving piston, for the gas, wherein the combustion chamber has a venting opening discharging to the outside, the opening cross section of which is settable by a regulating slide.
The object of the invention is to improve the efficacy and/or the functionality when driving securing elements using a fuel-operated firing device comprising at least one main combustion chamber for a fuel, a driving piston that can be driven out of the main combustion chamber in a firing direction by means of expandable gases, and a pre-chamber with which an ignition device is associated and in which a pressure acting on the main combustion chamber can build up prior to a fuel-air mixture being ignited in said main combustion chamber.
The object is achieved in a fuel-operated firing device for driving securing elements into a substrate, comprising at least one main combustion chamber for a fuel, a driving piston that can be driven out of the main combustion chamber in a firing direction by means of expandable gases, and a pre-chamber with which an ignition device is associated and in which a pressure acting on the main combustion chamber can build up prior to a fuel-air mixture being ignited in said main combustion chamber, in that a valve system is associated with the pre-chamber, by means of which valve system a maximum charge pressure in the pre-chamber can be varied in order to adjust the firing energy provided during the firing operation. The valve system is, for example, a venting valve, which is associated with the pre-chamber. In relation to a venting valve associated with the main combustion chamber, this provides the advantage, inter alia, that the firing energy may be more finely adjusted. This is to be attributed to the fact, for example, that less pressure is built up during the pre-combustion in the pre-chamber than during the main combustion in the main combustion chamber. Less venting thus occurs via the venting valve associated with the pre-chamber during equal valve opening duration. In addition, the requirements on the switching times of the venting valve associated with the pre-chamber are not as high, since the pre-combustion runs more slowly than the main combustion. The pre-combustion lasts, for example, approximately four times as long as the main combustion.
One preferred exemplary embodiment of the fuel-operated firing device is characterized in that the valve system is embodied as a manually actuated venting valve. The venting valve can be actuated, for example, directly by hand or via a positioning element, for example, a positioning wheel.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the valve system is embodied as a pressure regulating valve. The valve system is advantageously embodied as a controllable pressure limiting valve.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the valve system is electrically activated by an electronic regulator. The activation can take place via an electrical signal, which results from an analysis of a prior firing.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the electronic regulator comprises a user interface. A user of the firing device can advantageously perform the energy setting for a subsequent firing digitally via the user interface. The quality of the subsequent firing can thus be improved.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the valve system is connected with respect to control to a sensor device, which comprises at least one sensor. State variables, which are not constant during operation of the firing device, can be acquired using the sensor device. In this case, these are, for example, temperatures or pressures, which change depending on the location or the time.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the sensor device comprises at least one temperature sensor, one pressure sensor, one acceleration sensor, one velocity sensor, and/or one sensor for acquiring a height at which the firing device is presently located. The sensor for acquiring a height can also be referred to as a height meter. A present pressure in operation of the bolt firing device can be acquired using the pressure sensor. The pressure in the pre-chamber can advantageously be acquired using the pressure sensor. A present temperature in operation of the bolt firing device can be acquired using the temperature sensor. Thus, for example, a temperature in the pre-chamber can be acquired using the temperature sensor. However, state variables, such as the pressure or the temperature, in the main combustion chamber can also be acquired using the sensor device.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that a valve system is associated with the main combustion chamber, by means of which valve system a maximum pressure in the main combustion chamber can be limited. The operating comfort in operation of the firing device can possibly also be controlled by the combination of the two valve systems. The valve system is preferably embodied as a variable overpressure valve. A desired maximum pressure during a combustion in the main combustion chamber can advantageously be set using the valve system.
A further preferred exemplary embodiment of the fuel-operated firing device is characterized in that the firing device comprises a control device, by means of which the firing energy is determined from a differential pressure between the main combustion chamber and an ambient pressure. The pre-chamber comprises at least one passage opening, which is closable by the control device. The pre-chamber is in particular connectable via an exhaust to the surroundings by means of the open passage opening. In addition, the control device is connected with respect to control pressure to the main combustion chamber. The control device is activated in operation of the firing device using the main combustion chamber pressure by the connection with respect to control pressure. When the pressure in the main combustion chamber reaches a certain pressure level, the at least one passage opening of the pre-chamber is automatically opened.
The invention furthermore relates to a method for operating an above-described fuel-operated firing device. Gas cartridges are used for providing the firing energy, for example. Due to the pre-combustion in the pre-chamber before the actual main combustion, the firing energy provided by the firing device can be elevated without the overall size of the firing device increasing. The efficiency of the firing device can be increased by the combustion at elevated pressure, since the combustion operations run more efficiently at higher pressure. It is made possible by the invention for the user of the firing device to set the firing energy of the firing device independently of presently prevailing environmental conditions in a simple manner. Applications having a lower energy requirement can thus advantageously also be operated consistently.
The invention also relates to a computer program product having program code for carrying out an above-described method, in particular when the program is executed in the controller of the firing device.
Further advantages, features, and details of the invention result from the following description, in which various exemplary embodiments are described in detail with reference to the drawings. In the figures:
A firing device 1 is illustrated very schematically in a longitudinal section in various operating states and views in
A driving piston 10 is guided so it is movable back and forth in
The bolt guide having the piston rod 11 of the driving piston 10 arranged therein is also referred to as a firing mechanism. A securing element, such as a nail, bolt, or the like can be driven into a substrate (not shown) by means of the firing mechanism. The firing device 1 is pressed with its ball guide against the substrate and triggered before the firing of a securing element. A switch (not shown), which is also referred to as a trigger switch, is used to trigger a firing operation, for example. The switch is provided, for example, on a handle (also not shown) of the firing device 1.
A firing direction is indicated in
A movement of the driving piston 10 to the right in
A movement of the driving piston 10 to the left is delimited by stop and/or damping elements 28, 29. The stop and/or damping elements 28 represent a cushion 110.
The piston head 12 comprises a first piston surface 21, which faces toward the main combustion chamber 6. A second piston surface 22, which faces away from the main combustion chamber 6, delimits a pre-chamber 25 in a pre-chamber cylinder 24. The pre-chamber cylinder 24 is part of the housing 3 of the firing device 1.
The pre-chamber 25 represents a pre-combustion chamber, with which an ignition device 26 and an inlet device 27 are associated. Moreover, the stop and/or damping elements 28, 29 are arranged in the pre-chamber 25. A combustible-gas-air mixture, which is ignited with the aid of the ignition device 26 in the pre-chamber 25, is supplied via the inlet device 27 to the pre-chamber or pre-combustion chamber 25.
The pre-chamber cylinder 24 comprises passage openings 31, 32, which enable, for example, the exit of exhaust gases from the pre-chamber 25. The passage openings 31, 32 are closable as needed by a control device 30. The control device 30 comprises a control sleeve 34, which has passage openings 37, 38.
If the passage openings 37, 38 of the control sleeve 34 are moved into line with the passage openings 31, 32, the passage openings 31, 32 are then open, as can be seen in
Overflow openings 41, 42 are provided between the pre-chamber 25 and the main combustion chamber 6. A valve system 43, 44 is associated with each of the overflow openings 41, 42. The valve systems 43, 44 are, for example, valve flaps, which enable a passage of an ignited air-fuel mixture from the pre-chamber 25 into the main combustion chamber 6.
The control system 30 comprises a control pressure surface 45, which is connected with respect to control pressure to the main combustion chamber 6. The control pressure surface 45 is embodied as a ring surface 46, which faces toward the main combustion chamber 6 radially outside the pre-chamber cylinder 24. The control pressure surface 45 is mechanically coupled to the control sleeve 30 by means of a coupling element 48.
The coupling element 48 is embodied as a slide 50, which is guided so it is movable back and forth in the horizontal direction on the pre-chamber cylinder 24 in
The control device 30 furthermore comprises spring devices 54, 55, which are embodied, for example, as coiled compression springs. A housing-fixed stop 56, 57 is associated with each of the left ends of the spring devices 54, 55 in
The spring devices 54, 55 are clamped between the housing-fixed stops 56, 57 and the right end 51 of the slide 50 having the control pressure surface 45. The slide 50 is therefore supported via the spring devices 54, 55 on the housing-fixed stops 56, 57.
The bolt firing device 1 is shown in a non-pressed-on state in
The main combustion chamber 6 is delimited by a combustion chamber sleeve 84, which is displaceable to a limited extent in the axial direction to enable flushing of the main combustion chamber 6. A ventilator 80 is arranged in the main combustion chamber 6.
In
The bolt firing device 1 is shown in the pressed-on state in
Combustible gas is subsequently injected by means of the inlet device 27 into the pre-chamber 25 and by means of the inlet device 8 into the main combustion chamber 6. The ventilator 80 rotates in the main combustion chamber 6 during the injection of the combustible gas into the pre-chamber 25 and the main combustion chamber 6.
The ignition of the gas mixture is initiated by the ignition device 26 associated with the pre-chamber 25 in the vicinity of the cushion 110. After the ignition of the gas mixture in the pre-chamber 25, a flame front propagates, which travels from the side of the cushion 110 in the direction of the main combustion chamber 6, i.e., to the right in
The overflow from the pre-chamber 25 into the main combustion chamber 6 takes place via the overflow openings 41, 42 with open valve systems 43, 44. The valve systems 43, 44 are embodied, for example, as check flaps, which release the overflow openings 41, 42, which are also referred to as ignition transfer openings, during the propagation of the laminar flame front.
When the flame front has reached the check flaps of the valve systems 43, 44, the flame can transfer the ignition by means of the check flaps into the main combustion chamber 6, whereby the main chamber combustion is initiated in the main combustion chamber 6. The main chamber ignition in the main combustion chamber 6 is indicated in
During the main chamber ignition 86, the pressure rises in the main combustion chamber 6 and the control sleeve 34 is displaced forward, i.e., to the left in
The pre-chamber pressure escaping from the pre-chamber 25 via the open ventilation connections 108, 109 is indicated by arrows 91 to 94 in
A partial vacuum arises in the main combustion chamber 6 due to cooling of the bolt firing device 1 after the firing. This partial vacuum in the main combustion chamber 6 has the result that the driving piston 10 is drawn or suctioned into its starting position. In this case, fresh air is drawn or suctioned into the pre-chamber 25 of the bolt firing device 1 through a pre-chamber inlet 140 at the left end of the pre-chamber cylinder 24 in
A check valve acting on one side is advantageously associated with the pre-chamber inlet 140. The check valve comprises, for example, a relatively large spring leaf, which does enable suctioning of fresh air into the pre-chamber 25, but in the reverse direction prevents undesired flowing of pressurized fuel-air mixture out of the pre-chamber 25 into the environment.
When the bolt firing device 1 is lifted with its firing end 14, which is shown in
In
The coupling sleeve 100 is fixedly connected to a connecting flange 105 via slide rods 101, 102, 103, which partially represent the slide 50. The connecting flange 105 connects the control sleeve 34 to the slide rods 101 to 103. On the other side, the slide rods 101 to 103 are connected via a connecting flange 98 to the coupling sleeve 100.
Each slide rod 101 to 103 is associated with a spring device 54, 55 embodied as a compression spring. The spring devices 54, 55 are clamped in the installed state of the control device 30 between the connecting flange 98 and the housing-fixed stops 56, 57 on the pre-chamber cylinder 24.
The control sleeve 34 is used for the purpose of releasing the passage openings 31, 32; 117, 118 in the pre-chamber cylinder 24 as needed, as indicated in
It can be seen in
The valve elements 121 to 123 comprising the closing elements 127, 128 are integrally formed from spring steel. The production of the valve elements 121 to 123 comprising the closing elements 127, 128 is performed, for example, by laser beam cutting. The connecting ring body 124 can also be produced from a spring steel material by laser beam cutting.
The system behavior and/or the total energy of the firing device 1 is not constant, in particular as a result of environmental influences. In the case of a regulation of the overflowing gas quantity between the pre-chamber 25 and the main combustion chamber 6, solely a relative value is tapped between them, which results because of the conditions prevailing before the combustion. However, since the firing energy is determined by the differential pressure between the main combustion chamber and the ambient pressure, a non-constant energy output of the firing device 1 can occur, as has been found in experiments and studies carried out in the scope of the present invention.
A firing device and method or a system are provided by the invention, which enable a constant setting of the energy to the user of the firing device 1. The firing device 1 thus advantageously supplies a consistent predefined firing energy even in the event of different environmental conditions.
A valve system, which is associated with the pre-chamber 25, is indicated by a rectangle 161 in
The valve system 161 is connected with respect to control to an electronic regulator, which is indicated by a rectangle 162. Sensors, which are connected with respect to control to the electronic regulator 162, are indicated by further rectangles 163, 164. The sensor 163 is associated with the pre-chamber 25. The sensor 164 is associated with the main combustion chamber 6.
In addition, a valve system 168, which is also connected with respect to control to the electronic regulator 162, is associated with the main combustion chamber 6. The two valve systems 161 and 168 are embodied as pressure limiting valves. The pressure limiting valves 161, 168 are electronically activated via the electronic regulator 162. Environmental influences can be acquired using the sensors 163, 164. For this purpose, the sensors 163, 164 are embodied, for example, as temperature sensors or as pressure sensors.
The pressure limiting valves 161, 168 are adjusted in accordance with environmental influences by means of the electronic regulator 162 in operation of the firing device 1. Thus, for example, at low temperatures, the pressure limiting valve 161 associated with the pre-chamber 25 is regulated such that a pre-charging pressure of 0.7 bar is reached. At high temperatures, the pressure limiting valve 161 is activated accordingly, to enable a higher pre-charging pressure, since at high temperatures less gas is available for combustion in the firing device 1 as a result of the air density.
The sensors 163, 164 can also be embodied as pressure sensors, which measure the maximum pressures in the pre-chamber 25 or in the main combustion chamber 6. The maximum pressure occurring in the corresponding chamber is referred to as the maximum pressure in this context. The maximum pressure is analyzed after a completed firing in the electronic regulator 162. Items of information about the energy which was available for the firing are obtained therefrom. Before a subsequent firing, one of the pressure limiting valves 161, 168 can then be regulated such that the device energy defined by the electronic regulator 162 is available. Alternatively, both pressure limiting valves 161, 168 can be regulated accordingly.
A user interface, which is connected with respect to control to the electronic regulator 162, is indicated by a rectangle 165. The user interface 165 advantageously enables the user of the firing device 1 to electronically set the energy of the firing device 1. For this purpose, the information is transferred from the user interface 165 to the electronic regulator 162. At least one of the pressure limiting valves 161, 168 is then set by means of the electronic regulator 162.
In the bolt firing device 1 shown in
It is to be noted that the valve systems 168; 172 associated with the main combustion chamber 6 in
The maximum charging pressure can be varied during a pressure buildup phase using the valve systems 161; 171, optionally in combination with the valve systems 168; 172. In the pressure buildup phase, a fuel-air mixture is combusted with a laminar flame front in the pre-chamber 25. The maximum pressure can be limited during a main chamber combustion by means of the optional valve system 168; 172.
Number | Date | Country | Kind |
---|---|---|---|
15201897 | Dec 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/081910 | 12/20/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/108782 | 6/29/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4913331 | Utsumi et al. | Apr 1990 | A |
6755159 | Adams et al. | Jun 2004 | B1 |
6830017 | Wolf | Dec 2004 | B2 |
20040079302 | Wolf et al. | Apr 2004 | A1 |
20040144357 | Adams | Jul 2004 | A1 |
20050001000 | Favre-Bulle et al. | Jan 2005 | A1 |
20090250499 | Hahn et al. | Oct 2009 | A1 |
20100243699 | Largo | Sep 2010 | A1 |
20110068141 | Wolf | Mar 2011 | A1 |
20110204118 | Moeller | Aug 2011 | A1 |
20160144497 | Boehm et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
40 10 517 | Oct 1991 | DE |
42 43 617 | Jun 1994 | DE |
102 32 035 | Jan 2004 | DE |
103 27 191 | Dec 2004 | DE |
2 106 883 | Oct 2009 | EP |
2 826 601 | Jan 2015 | EP |
WO 2017108772 | Jun 2017 | WO |
WO 2017108787 | Jun 2017 | WO |
Entry |
---|
International Bureau, International Search Report in International Application No. PCT/EP2016/081910, dated Mar. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20200269405 A1 | Aug 2020 | US |