The present invention relates to fuel supply systems for internal combustion engines; more particularly, to devices for controlling fuel supply pressure; and most particularly, to a fuel pressure regulator wherein a valve and diaphragm assembly is axially offset from a valve seat orifice to prevent large hysteresis values and audible noise.
Fuel supply systems for internal combustion engines are well known and typically include means for maintaining a predetermined inline pressure of fuel being supplied to fuel injectors or carburetors or the like. A prior art fuel pressure regulator typically includes a valve having a matable seat and head. The valve seat includes a center-aligned fuel orifice. The fuel orifice is aligned with the centerline of the valve head, which causes the resulting opening and closing forces to be aligned on the same centerline, desirably providing a force balance to the regulator and intending to maintain a parallel orientation between the valve head and the seat. The valve head is generally pawn-shaped and includes a ball mounted on a stem and pivotably captured in a fixed retainer. Because the ball may swivel in the retainer, the valve head is undesirably responsive to flow cavitation turbulence occurring in the fuel orifice, resulting in valve vibration and audible noise (valve chatter). Because of this chaotic instability, the valve head sealing surface either can remain parallel to the valve seat sealing surface or can settle on the edge of the seat sealing surface at any one of an infinite number of angular positions. Because of minute pressure fluctuations on the sealing surface of the valve head, caused by cavitation, the valve head tends to flutter among ever-changing rest points on the seat. If the valve head does pivot and thereby remains in contact with the seat as flow rate is decreasing, the pressure at the set point flow rate will be significantly less than the actual increasing flow rate value (flow hysteresis). Audible noise and large hysteresis values can affect user satisfaction and also cause manufacturing problems and high reject rates.
What is needed is a fuel pressure regulator which is silent and lacks flow hysteresis.
It is a principal object of the present invention to provide an improved fuel pressure regulator wherein a valve head has a single and preferred mating position with a valve seat.
It is a further object of the invention to provide such a regulator which is simple and inexpensive to manufacture.
It is a still further object of the invention to reduce the manufacturing cost and waste for fuel pressure regulators.
Briefly described, a fuel pressure regulator in accordance with the invention includes a valve head and diaphragm assembly having a centerline offset from the centerline of a corresponding valve seat and fuel orifice. This may be accomplished either by offsetting the valve head and diaphragm assembly in the pressure regulator with respect to the seat and orifice, by offsetting the orifice in the seat with respect to the head and diaphragm assembly, or by inducing offsetting axes between the valve head and seat orifice.
The pressure differential between the control pressure above the valve and the backpressure on the fuel orifice results in a closing force that acts along the centerline of the fuel orifice. Since the vector of this force does not align with the centerline of the valve head and diaphragm assembly, a torque on the valve head is always present which acts on the valve swivel point to keep the valve in a stable, pivoted position at all flow rates. The valve head always makes contact with the valve seat along the sealing surface edge at the contact point having the shortest distance to the seat orifice centerline. Because the valve head maintains this single point contact during regulator operation, the pressure instability and noise problems are eliminated.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
The benefits and advantages of a fuel pressure regulator in accordance with the invention may be better appreciated by first considering a prior art fuel pressure regulator.
Referring to
Axially disposed in a tubular process 28 of lower shell 12 is a valve seat 30 having a fuel orifice 32 centrally formed therein along seat axis 34 thereby having an orifice axis coincident therewith. Seat 30 has a first axial sealing surface 36 substantially orthogonal to axis 34.
Diaphragm 24 is provided with an aperture 38 having a diaphragm axis coaxial with seat axis 34. Disposed coaxially and sealingly within diaphragm aperture 38 is a valve retainer 42 having a typically conical socket 44 for retaining a ball end 46 of a valve head 48. Valve head 48, having axis 40 coaxial with the diaphragm axis, includes a flange 50 having a second axial sealing surface 51 for variably mating with first axial sealing surface 36 to regulate flow of fuel through orifice 32.
A pressure regulating spring 52 is compressibly disposed between a lower spring retainer 53 and an upper spring retainer 54 for urging second sealing surface 51 toward first sealing surface 36, lower retainer 53 being seated against diaphragm 24 to retain and seal the diaphragm against valve retainer 42. Upper spring retainer 54 is formed having a central well 56 for slidingly engaging a tubular process 58 formed in upper shell 14. An adjustment screw 60 in process 58 engages retainer 54 to adjust the axial position thereof and thus the compression of spring 50 and the pressure required for fuel to displace head 48 from seat 30.
As noted above, because head 48 and seat 30 are coaxially disposed in the prior art regulating valve assembly 39 (FIG. 2), and because head ball 46 is rotatably retained in retainer 42, head sealing surface 51 may engage seat sealing surface 36 at an infinite number of points along the periphery of seat sealing surface 36, none of which is preferred. Thus the motion of head 48 with respect to seat 30 can be chaotic during flow of fuel therebetween.
Referring to
Referring to
Referring to
Referring to
Referring to
Spring member 141, includes outer hoop portion 142, which is generally circular in shape, and crescent portion 144. Crescent portion 144 includes base 146, arm 148 and end 150. As can be seen in
As best shown in
While biasing spring 141 shown in
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
The present application is a continuation application of U.S. application Ser. No. 10/606,906 filed on Jun. 26, 2003 now U.S. Pat. No. 6,802,340.
Number | Name | Date | Kind |
---|---|---|---|
4060193 | Foller | Nov 1977 | A |
4231347 | Ohumi et al. | Nov 1980 | A |
4235416 | LaCoste et al. | Nov 1980 | A |
4742845 | Capoccia et al. | May 1988 | A |
5220941 | Tuckey | Jun 1993 | A |
5265644 | Tuckey | Nov 1993 | A |
5709369 | Hawkins et al. | Jan 1998 | A |
6382183 | Preston et al. | May 2002 | B1 |
6422265 | Beyer et al. | Jul 2002 | B1 |
6481418 | Ristich et al. | Nov 2002 | B1 |
6533242 | Geib et al. | Mar 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20050034765 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10606906 | Jun 2003 | US |
Child | 10952295 | US |