The invention permits numerous embodiments. In order to further illustrate its basic principle one of these embodiments is represented in the drawing and is described below. In the drawing:
The pump stage 8 takes the form of a side-channel pump and has an impeller 15, rotatably arranged between two casing parts 13, 14, and two delivery chambers 16, 17.
The impeller 15 is rotationally locked on a shaft 18 of the electric motor 7 and has two rings of guide vanes 19, 20 concentrically enclosing one another and defining blade chambers. The blade chambers together with partially annular ducts 21, 22 arranged opposite in the casing parts 13, 14 form the delivery chambers 16, 17. The radially inner delivery chamber 16 delivers fuel from the swirl pot 5 to a jet pump 23, whilst the radially outer delivery chamber 17 delivers fuel from the swirl pot 5 through the electric motor 7 into the flow line 10. The jet pump 23 draws fuel from the fuel tank 3 via a prefilter 24 and delivers this into the swirl pot 5. The delivery chambers 16, 17 each pass through the impeller 15 and therefore have partially annular ducts 21, 22 arranged in each of the casing parts 13, 14. In
The connecting duct 29 is connected to the partially annular ducts 21, 22 in such a way that at a rated speed of the impeller 15 the same pressure prevails at connections 33, 34 of the connecting duct 29 to the partially annular ducts 21, 22. A pressure equilibrium, which prevents any flow of fuel, thereby prevails in the connecting duct 29. If the speed of the impeller 15 falls below the rated speed, however, the feed pressures in the delivery chambers 16, 17 and hence in the partially annular ducts 21, 22 will also fall. In the radially inner, partially annular duct 21, however, the fall in pressure is much more pronounced than in the radially outer, partially annular duct 22. Such a fall in pressure would mean, however, that the jet pump 23 would no longer be reliably supplied with fuel as propellant. The connecting duct 29 remedies this by diverting fuel from the radially outer delivery chamber 17 in the event of a fall in pressure in the radially inner delivery chamber 16, thereby maintaining the intended pressure in the radially inner delivery chamber 16. The fuel feed system 1 thereby allows the power output of the electric motor 7 to be controlled by the control device 9 according to the fuel consumption of the internal combustion engine 2.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 052 439.4 | Oct 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/54884 | 9/28/2005 | WO | 00 | 2/8/2006 |