The present invention relates a fuel pump which supplies fuel to an internal combustion engine, and more particularly to such a fuel pump which includes an inlet valve assembly.
Fuel systems in modern internal combustion engines fueled by gasoline, particularly for use in the automotive market, employ gasoline direct injection (GDi) where fuel injectors are provided which inject fuel directly into combustion chambers of the internal combustion engine. In such systems employing GDi, fuel from a fuel tank is supplied under relatively low pressure by a low-pressure fuel pump which is typically an electric fuel pump located within the fuel tank. The low-pressure fuel pump supplies the fuel to a high-pressure fuel pump which typically includes a pumping plunger which is reciprocated by a camshaft of the internal combustion engine. Reciprocation of the pumping plunger further pressurizes the fuel in order to be supplied to fuel injectors which inject the fuel directly into the combustion chambers of the internal combustion engine. During operation, the internal combustion is subject to varying demands for output torque. In order to accommodate the varying output torque demands, the mass of fuel delivered by each stroke of the pumping plunger must also be varied. One strategy to vary the delivery of fuel by the high-pressure fuel pump is to use a digital inlet valve which allows a full charge of fuel to enter the pumping chamber during each intake stroke, however, the digital inlet valve may be allowed to remain open during a portion of a compression stroke of the pumping plunger to allow some fuel to spill back toward the source. When the digital inlet valve is closed, the remainder of the compression stroke pressurizes the fuel and discharges the fuel to the fuel injectors. Examples of such an arrangement are disclosed in U.S. Pat. No. 7,401,594 to Usui et al. and in U.S. Pat. No. 7,707,996 to Yamada et al. However, this arrangement suffers from high audible noise associated with the opening and closing impacts of the high speed digital valve which is operated by a solenoid. Furthermore, the backflow of fuel causes pressure pulsations in the inlet line which require pressure pulsation dampers to mitigate the pressure pulsations.
Another strategy to vary the delivery of fuel by the high-pressure fuel pump is to use a proportional valve to meter the mass of fuel that is allowed to enter the pumping chamber during the intake stroke. An example of such an arrangement is shown in United States Patent Application Publication No. 2014/0255219 A1 to Lucas. However, this arrangement suffers from multiple shortfalls. First, unintended interruption of electricity to the inlet valve provides a full charge of pressurized fuel to the internal combustion engine. Secondly, although not mentioned in the disclosure of Lucas, it appears that two pressure relief valves would be required to prevent over-pressurization, one to relieve pressure from the outlet side of the pump to the pump pumping chamber, as commonly employed, and a second one to relieve fuel from the pumping chamber to the pump inlet, as there does not appear to be path for fuel flow beyond the unseated inlet check valve. Alternatively, if only one pressure relief valve was provided, the pressure relief valve could relieve fuel directly to the inlet side of the pump, bypassing the pumping chamber an inlet valve altogether, but this pressure relief valve would relieve fuel during pressure spikes which occur at the outlet of the high-pressure fuel pump at the start of pumping, thereby reducing efficiency of the high-pressure fuel pump. Thirdly, any fuel that may leak past the inlet valve, for example due to tolerances and wear, is pumped to the internal combustion engine, even if it is undesired. However, fully energizing the inlet valve to unseat the inlet check valve does not provide a path to relieve the pumping chamber of the leaked fuel.
What is needed is a fuel pump and inlet check valve which minimizes or eliminates one or more of the shortcomings as set forth above and provides an alternative to the fuel systems as set forth above.
Briefly described, a fuel pump includes a fuel pump housing with a pumping chamber defined therein; a pumping plunger which reciprocates within a plunger bore along a plunger bore axis such that an intake stroke of the pumping plunger increases volume of the pumping chamber and a compression stroke of the pumping plunger decreases volume of the pumping chamber; and an inlet valve assembly. The inlet valve assembly includes a valve body having 1) a valve body bore which is centered about, and extends along, a valve body bore axis, 2) a valve body inlet passage which opens into the valve body bore, and 3) a valve body outlet passage which opens into the valve body bore; a check valve with a check valve member which moves between a seated position and an unseated position, wherein the seated position prevents flow through the valve body outlet passage in a direction into the valve body bore and the unseated position permits flow through the valve body outlet passage such that the valve body bore is in fluid communication with the pumping chamber; and a valve spool within the valve body bore, the valve spool being moveable along the valve body bore axis between 1) a first position in which the valve spool maintains the check valve member in the unseated position and in which the valve body inlet passage is in fluid communication with the valve body outlet passage and 2) a second position in which the check valve member is able to move to the seated position and in which the valve body inlet passage is not in fluid communication with the valve body outlet passage. The fuel pump and inlet valve assembly as described herein eliminates the noise associated with digital inlet valves in order to meter fuel supplied to the internal combustion engine. Additionally, a full charge of fuel is not provided to the internal combustion engine in the event of an unintended interruption of electricity to the inlet valve assembly. Also additionally, only one pressure relief valve is needed for same operation of the fuel pump.
Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
In accordance with a preferred embodiment of this invention and referring initially to
As shown, low-pressure fuel pump 18 may be provided within fuel tank 14, however low-pressure fuel pump 18 may alternatively be provided outside of fuel tank 14. Low-pressure fuel pump 18 may be an electric fuel pump as are well known to a practitioner of ordinary skill in the art. A low-pressure fuel supply passage 22 provides fluid communication from low-pressure fuel pump 18 to high-pressure fuel pump 20. A fuel pressure regulator 24 may be provided such that fuel pressure regulator 24 maintains a substantially uniform pressure within low-pressure fuel supply passage 22 by returning a portion of the fuel supplied by low-pressure fuel pump 18 to fuel tank 14 through a fuel return passage 26. While fuel pressure regulator 24 has been illustrated in low-pressure fuel supply passage 22 outside of fuel tank 14, it should be understood that fuel pressure regulator 24 may be located within fuel tank 14 and may be integrated with low-pressure fuel pump 18.
Now with additional reference to
Outlet valve assembly 42 generally includes an outlet valve member 42a, an outlet valve seat 42b, and an outlet valve spring 42c. Outlet valve member 42a, illustrated by way of non-limiting example only as a ball, is biased toward outlet valve seat 42b by outlet valve spring 42c where outlet valve spring 42c is selected to allow outlet valve member 42a to open when a predetermined presser differential between pumping chamber 38 and fuel rail 44 is achieved. Outlet valve assembly 42 is oriented such that fuel is allowed to flow out of pumping chamber 38 through outlet valve assembly 42, however, fuel is not allowed to flow into pumping chamber 38 through outlet valve assembly 42.
Pressure relief valve assembly 48 generally includes a pressure relief valve member 48a, a pressure relief valve seat 48b, and a pressure relief valve spring 48c. Pressure relief valve member 48a, illustrated by way of non-limiting example only as a ball, is biased toward pressure relief valve seat 48b by pressure relief valve spring 48c where pressure relief valve spring 48c is selected to allow pressure relief valve member 48a when a predetermined presser differential between pumping chamber 38 and fuel rail 44 is achieved. Pressure relief valve assembly 48 is oriented such that fuel is allowed to flow into of pumping chamber 38 through pressure relief valve assembly 48, however, fuel is not allowed to flow out of pumping chamber 38 through pressure relief valve assembly 48.
Inlet valve assembly 40 will now be described with particular reference to
Valve body 50 is centered about, and extends along, a valve body axis 56 such that valve body 50 extends from a valve body first end 50a to a valve body second end 50b. A valve body bore 58 extends into valve body 50 from valve body first end 50a and terminates at a valve body end wall 60 which extends to valve body second end 50b such that valve body bore 58 is preferably cylindrical. A valve body first inlet passage 62 extends through valve body 50 such that valve body first inlet passage 62 extends from a valve body outer periphery 50c of valve body 50 and opens into valve body bore 58. A valve body second inlet passage 64 (not visible in
A valve body central passage 66 extends through valve body end wall 60 such that valve body central passage 66 connects valve body second end 50b with valve body bore 58 and such that valve body central passage 66 is centered about, and extends along, valve body axis 56. A plurality of valve body outlet passages 68 is provided in valve body end wall 60 such that each valve body outlet passage 68 extends through valve body end wall 60 and such that each valve body outlet passage 68 connects valve body second end 50b with valve body bore 58. Each valve body outlet passage 68 is laterally offset from valve body central passage 66 and extends through valve body end wall 60 in a direction parallel to valve body axis 56.
As shown in the figures, valve body outer periphery 50c may include three sections of distinct diameters. A valve body outer periphery first portion 50d of valve body outer periphery 50c begins at valve body first end 50a and extends to a valve body outer periphery second portion 50e of valve body outer periphery 50c such that valve body outer periphery first portion 50d is smaller in diameter than valve body outer periphery second portion 50e. As shown in the figures, valve body outer periphery first portion 50d may be located entirely outside of pump housing inlet passage 41 and valve body outer periphery second portion 50e includes valve body first inlet passage 62 and valve body second inlet passage 64 such that valve body first inlet passage 62 and valve body second inlet passage 64 are each in constant fluid communication with the portion of pump housing inlet passage 41 that is upstream of inlet valve assembly 40, i.e. valve body first inlet passage 62 and valve body second inlet passage 64 are each in constant fluid communication with the portion of pump housing inlet passage 41 that is between inlet valve assembly 40 and low-pressure fuel pump 18. A valve body outer periphery third portion 50f of valve body outer periphery 50c extends from valve body outer periphery second portion 50e to valve body second end 50b such that valve body outer periphery third portion 50f is larger in diameter than valve body outer periphery second portion 50e. Valve body outer periphery third portion 50f is sealingly engaged with pump housing inlet passage 41 such that fluid communication through pump housing inlet passage 41 past inlet valve assembly 40 at the interface of pump housing inlet passage 41 and valve body outer periphery third portion 50f is prevented and fluid communication through pump housing inlet passage 41 past inlet valve assembly 40 is only possible through valve body bore 58.
Valve spool 52 is made of a magnetic material and is centered about, and extends along, valve body axis 56 from a valve spool first end 52a to a valve spool second end 52b. Valve spool 52 includes a valve spool first portion 52c which is proximal to valve spool first end 52a and a valve spool second portion 52d which is proximal to valve spool second end 52b. Valve spool first portion 52c has a valve spool outer periphery 52e which is complementary with valve body bore 58 such that valve spool outer periphery 52e and valve body bore 58 are sized in order to substantially prevent fuel from passing between the interface of valve spool outer periphery 52e and valve body bore 58. As used herein, substantially preventing fuel from passing between the interface of valve spool outer periphery 52e and valve body bore 58 encompasses permitting small amounts of fuel passing between the interface which still allows operation of high-pressure fuel pump 20 as will readily be recognized by a practitioner of ordinary skill in the art. Valve spool second portion 52d includes a base portion 52f which extends from valve spool first portion 52c such that base portion 52f is smaller in diameter than valve spool first portion 52c, thereby providing an annular space radially between base portion 52f and valve body bore 58. Valve spool second portion 52d also include a tip portion 52g which extend from base portion 52f and terminates at valve spool second end 52b. Tip portion 52g is smaller in diameter than base portion 52f, thereby defining a valve spool shoulder 52h where tip portion 52g meets base portion 52f. Tip portion 52g is sized to be located within valve body central passage 66 of valve body 50 such that tip portion 52g is able to slide freely within valve body central passage 66 in the direction of valve body axis 56. In use, tip portion 52g is used to interface with check valve 54 as will be described in greater detail later.
Valve spool first portion 52c is provided with a valve spool groove 70 which extends radially inward from valve spool outer periphery 52e such that valve spool groove 70 is annular in shape. Valve spool groove 70 is selectively aligned or not aligned with valve body first inlet passage 62 and valve body second inlet passage 64 in order to control fluid communication through pump housing inlet passage 41 as will be described in greater detail later. One or more valve spool passages 72 is provided which extend from valve spool groove 70 through valve spool first portion 52c toward valve spool second end 52b, thereby providing fluid communication between valve spool groove 70 and valve body outlet passages 68.
A valve spool end bore 74 extends into valve spool 52 from valve spool first end 52a. As shown, valve spool end bore 74 may include a valve spool end bore first portion 74a which is an internal frustoconical shape and a valve spool end bore second portion 74b which is cylindrical and terminates with a valve spool end bore bottom 74c. A valve spool connecting passage 76 provides fluid communication between valve spool groove 70 and valve spool end bore 74 such that, as shown in the figures, valve spool connecting passage 76 may be formed, by way of non-limiting example only, by a pair of perpendicular drillings.
Check valve 54 includes a check valve member 78 and a travel limiter 80. Check valve 54 is arranged at valve spool second end 52b such that check valve member 78 is moved between a seated position which blocks valve body outlet passages 68 (shown in
Solenoid assembly 55 includes an inner housing 82, a pole piece 84 located within inner housing 82, a return spring 86, a spool 88, a coil 90, an overmold 92, and an outer housing 94. The various elements of solenoid assembly 55 will be described in greater detail in the paragraphs that follow.
Inner housing 82 is hollow and is stepped both internally and externally such that an inner housing first portion 82a is open and larger in diameter than an inner housing second portion 82b which is closed. Inner housing 82 is centered about, and extends along valve body axis 56. The outer periphery of inner housing first portion 82a sealingly engages fuel pump housing 28 in order to prevent leakage of fuel from pump housing inlet passage 41 to the exterior of high-pressure fuel pump 20 and an annular gap is provided between the inner periphery of inner housing first portion 82a and valve body outer periphery second portion 50e in order to provide fluid communication between pump housing inlet passage 41 and valve body second inlet passage 64. The inner periphery of inner housing second portion 82b mates with valve body outer periphery first portion 50d to prevent communication of fuel between the interface of the inner periphery of inner housing second portion 82b and valve body outer periphery first portion 50d.
Pole piece 84 is made of a magnetically permeable material and is received within inner housing second portion 82b such that pole piece 84 is centered about, and extends along, valve body axis 56. A pole piece first end 84a is frustoconical such that the angle of pole piece first end 84a is complementary to the angle of valve spool end bore first portion 74a. In this way, pole piece first end 84a is received within valve spool end bore first portion 74a. A pole piece second end 84b, which is opposed to pole piece first end 84a, is located at the closed end of inner housing 82. A pole piece bore 84c extends axially through pole piece 84 from pole piece first end 84a to pole piece second end 84b such that the larger diameter portion of pole piece bore 84c extends into pole piece 84 from pole piece first end 84a, thereby defining a pole piece shoulder 84d which faces toward valve spool bore bottom 74c. Return spring 86 is received partially with pole piece bore 84c such that return spring 86 abuts pole piece shoulder 84d. Return spring 86 is also partially received within valve spool end bore second portion 74b and abuts valve spool end bore bottom 74c. Return spring 86 is held in compression between pole piece shoulder 84d and valve spool end bore bottom 74c, and in this way, return spring 86 biases valve spool 52 away from pole piece 84.
Spool 88 is made of an electrically insulative material, for example plastic, and is centered about, and extends along, valve body axis 56 such that spool 88 circumferentially surrounds inner housing second portion 82b in a close-fitting relationship. Coil 90 is a winding of electrically conductive wire which is wound about the outer periphery of spool 88 such that coil 90 circumferentially surrounds pole piece 84. Consequently, when coil 90 is energized with an electric current, valve spool 52 is magnetically attracted to, and moved toward, pole piece 84 and when coil 90 is not energized with an electric current, valve spool 52 is moved away from pole piece 84 by return spring 86. A more detailed description of operation will be provided later.
Outer housing 94 circumferentially surrounds inner housing 82, spool 88, and coil 90 such that spool 88 and coil 90 are located radially between inner housing 82 and outer housing 94. Overmold 92 is an electrically insulative material, for example plastic, which fills the void between spool 88/coil 90 and outer housing 94 such that overmold 92 extends axially from outer housing 94 to define an electrical connector 96 which includes terminals (not shown) that are connected to opposite ends of coil 90. Electrical connector 96 is configured to mate with a complementary electrical connector (not show) for supplying electric current to coil 90 in use. As shown, a coil washer 98 may be provided within outer housing 94 axially between coil 90 and overmold 92 in order to complete the magnetic circuit of solenoid assembly 55.
Operation of high-pressure fuel pump 20, and in particular, inlet valve assembly 40, will now be described with particular reference to
Now with particular reference to
Now with particular reference to
Now with particular reference to
As should now be clear, different duty cycles can be provided to vary the amount of fuel metered to pumping chamber 38 where the different duty cycles result in varying magnitudes of alignment of valve spool groove 70 with valve body second inlet passage 64, thereby varying the magnitude of restriction. In other words, the third and fourth positions as described above are only examples of positions of valve spool 52, and other duty cycles can be provided in order to provide different metered amounts of fuel to pumping chamber 38 in order to achieve different output torques of internal combustion engine 12. An electronic control unit 100 may be used to supply electric current to coil 90 at the various duty cycles described herein. Electronic control unit 100 may receive input from a pressure sensor 102 which senses the pressure within fuel rail 44 in order to provide a proper duty cycle to coil 90 in order to maintain a desired pressure in fuel rail 44 which may vary based on the commanded torque desired to be produced by internal combustion engine 12.
While high-pressure fuel pump 20 has been illustrated in the figures as including pressure pulsation dampers upstream of pump housing inlet passage 41, although not described herein, it should be understood that the pressure pulsation dampers may be omitted as a result of employing inlet valve assembly 40 which is a proportional valve. Furthermore, while check valve member 78 has been illustrated herein as a flat plate, it should be understood that check valve member may alternatively be a ball biased by a spring which opens and closes a single valve body outlet passage 68.
High-pressure fuel pump 20 with inlet valve assembly 40 as described herein eliminates the noise associated with digital inlet valves in order to meter fuel supplied to internal combustion engine 12. Additionally, in the event of an unintended interruption of electricity to inlet valve assembly 40, a full charge of fuel is not delivered to internal combustion engine. Also additionally, only one pressure relief valve assembly 48 is needed to ensure safe operation.
While this invention has been described in terms of preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
6082332 | Hefler | Jul 2000 | A |
7401594 | Usui et al. | Jul 2008 | B2 |
7707996 | Yamada et al. | May 2010 | B2 |
8882475 | Aritomi | Nov 2014 | B2 |
9429097 | Pursifull | Aug 2016 | B2 |
9458806 | Zhang | Oct 2016 | B2 |
9657700 | Schanz | May 2017 | B2 |
9765739 | Kato | Sep 2017 | B2 |
9957935 | Pursifull | May 2018 | B2 |
10107226 | Komori | Oct 2018 | B2 |
20020033167 | Hiraku | Mar 2002 | A1 |
20080203347 | Burrola et al. | Aug 2008 | A1 |
20120301340 | Aritomi | Nov 2012 | A1 |
20140134027 | Schanz | May 2014 | A1 |
20140216407 | Smith | Aug 2014 | A1 |
20140255219 | Lucas | Sep 2014 | A1 |
20150098848 | Kato | Apr 2015 | A1 |
20150240769 | Zhang | Aug 2015 | A1 |
20160010607 | Lucas | Jan 2016 | A1 |
20160160790 | Pursifull | Jun 2016 | A1 |
20160333837 | Pursifull | Nov 2016 | A1 |
20170184045 | Komori | Jun 2017 | A1 |
20170248110 | Hashida et al. | Aug 2017 | A1 |
20190145365 | Leblay et al. | May 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200011279 A1 | Jan 2020 | US |