1. Field of the Invention
The present invention relates to a fuel pump control device, and more particularly to a fuel pump control device allowing a fuel pump having a small capacity to feed a sufficient amount of fuel to an internal combustion engine.
2. Description of Background Art
As described in Japanese Utility Model Publication Nos. Hei 2-31566 and Hei 6-14069, control devices for controlling an electrically-operated fuel pump for feeding fuel to an internal combustion engine have been configured such that a relay means is connected between the fuel pump and a battery, wherein the fuel pump is intermittently operated by opening/closing the relay means on the basis of an ignition signal for an engine.
The thyristor 301 as the relay means, which has no mechanical contact, is excellent in durability; however, it has a large voltage drop ΔV at a PN junction. As a result, a drive voltage applied to the fuel pump 6 is lower than a battery voltage by the voltage drop ΔV. On the other hand, as shown in
An object of the present invention is to solve the problem of the above-described related art fuel pump control device and to provide a fuel pump control device allowing a fuel pump having a small capacity to feed a sufficient amount of fuel to an internal combustion engine.
To achieve the above object, the present invention provides the following configurations:
(1) a fuel pump control device for intermittently supplying a drive signal, to an electrically-operated fuel pump for feeding fuel to an internal combustion engine, in synchronization with an ignition signal for the internal combustion engine, characterized in that a drive signal is continuously supplied to the fuel pump in accordance with a running state of a vehicle; and
(2) a fuel pump control device for controlling an electrically-operated fuel pump for supplying fuel to an internal combustion engine, characterized in that the control device comprises: a vehicle running state deciding means for generating a vehicle running state signal representative of a running state of a vehicle; a comparing means for comparing the vehicle running state signal with a specific value; and a controlling means for controlling opening/closing of the connection between the fuel pump and a power supply line in accordance with the comparison result obtained by the comparing means.
According to the above-described first feature, a drive signal is continuously supplied to the fuel pump under a specific, vehicle running state, whereby the fuel pump repeats the discharge operation. Accordingly, it is possible to increase the discharged amount per unit time without enlarging the fuel pump.
According to the above-described feature (2), since the fuel pump is directly connected to the power supply line under a specific vehicle running state, the fuel pump repeats the discharge operation. Accordingly, it is possible to increase the discharged amount per unit time without enlarging the fuel pump.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
a is a timing chart of the ignition signal showing the operation of the fuel pump control device shown in
b is a timing chart of the drive pressure showing the operation of the fuel pump control device shown in
c is a timing chart of the pump operation showing the operation of the fuel pump control device shown in
d is a timing chart of the comparison circuit showing the operation of the fuel pump control device shown in
e is a timing chart of the vehicular speed showing the operation of the fuel pump control device shown in
Hereinafter, the present invention will be described in detail with reference to the drawings.
Referring to
The switching device 10 includes a power supply path switching relay 101 and its drive coil 102. A first movable contact 101a of the switching relay 101 is connected to a power supply line at a position between the kill switch 18 and the thyristor 12, and a second movable contact 101b of the switching relay 101 is connected to the output terminal of the thyristor 12. A fixed contact 101c of the switching relay 101 is connected to the fuel pump 14.
The drive coil 102 of the switching relay 101 has one end connected to the power supply line at a position offset on the battery 11 side from the thyristor 12, and has the other end connected to a switching control unit 13. The fixed contact 101c of the switching relay 101 is connected to the second movable contact 101b side if the drive coil 102 is in a non-excitation state, and is connected to the first movable contact 101a side if the drive coil 102 is in an excitation state.
The other end of the drive coil 102 is connected to a collector terminal of the switching transistor 132. A vehicular speed signal V1, typically a drive signal from a speed meter, is inputted as a signal representative of a vehicle running state in one input terminal of the comparison circuit 131. A reference vehicular speed signal Vref is supplied from the reference vehicular speed generating circuit 133 to the other input terminal of the comparison circuit 131. In this embodiment, the reference vehicular speed signal Vref is set at the same value as the vehicular speed signal V1 at 20 km/hr.
With this configuration, during running of the vehicle at a speed less than 20 km/hr, since the vehicular speed signal V1 is less than the reference vehicular speed signal Vref, the output from the comparison circuit 131 keeps an “L” level as shown in
On the contrary, if the vehicular speed becomes more than 20 km/hr, the vehicular speed signal V1 exceeds the reference vehicular speed signal Vref, so that the output from the comparison circuit 131 becomes an “H” level. As a result, the switching transistor 132 is conducted to excite the drive coil 102 of the switching relay 101, so that the movable contact 101a side of the switching relay 101 is selected. Accordingly, a drive voltage is continuously supplied (that is, a DC voltage is supplied) from the power supply line to the fuel pump 14, whereby the fuel pump 14 repeats the discharge operation at a cycle with a short self-excitation state.
Further, at the vehicular speed of 20 km/hr or more, since the drive voltage is directly supplied from the power supply line to the fuel pump 14 not by way of the thyristor 12, the drive voltage becomes larger than the drive voltage upon intermittent operation at the vehicular speed less than 20 km/hr by the voltage drop ΔV at the thyristor 12.
Accordingly, in this embodiment, when the running speed of the vehicle is increased, a drive signal is continuously supplied to the fuel pump 14, so that the fuel pump 14 repeats the discharge operation in the self-excitation state. As a result, it is possible to increase the discharge amount per unit time without enlarging the fuel pump.
According to this embodiment, the power supply to the fuel pump 14 can be perfectly cut off by opening the kill switch 18 irrespective of intermittent or continuous supply of power to the fuel pump.
In this embodiment, since the switching relay 101 is not of a type opened/closed in synchronization with ignition pulses of the engine, it does not require high speed operation, a large capacity, or a strict durability, and therefore, such a switching relay 101 can be configured as a mechanical relay or an inexpensive switching transistor. As a result, the increased cost by additionally providing the switching device 10 can be made sufficiently lower than the increased cost by increasing the capacity of the fuel pump.
In this embodiment, the power supply path communicated to the fuel pump 14 is switched to increase the supplied amount of fuel when the vehicular speed exceeds 20 km/hr; however, the above switching may be performed when the vehicular speed becomes a specific high speed such as 60 km/hr to-80 km/hr.
The signal representative of the vehicular speed is not necessarily limited to the drive signal from the speed meter described in the embodiment but may be a control signal representative of the vehicular speed in a vehicle controlling computer (ECU) or a signal representing the rotational number of an output shaft of a transmission.
The signal representing the vehicle running state is not necessarily limited to the above-described signal representative of the vehicular speed but may be another state signal closely associated with the fuel consumption in the engine, such as a signal representative of the engine speed or a signal representative of the throttle opening degree.
The present invention exhibits the following effects:
(1) According to the present invention, a drive signal is continuously supplied to the fuel pump under a specific vehicle running state, whereby the fuel pump repeats the discharge operation. Accordingly, it is possible to increase the discharged amount per unit time without enlarging the fuel pump.
(2) According to the present invention, since the fuel pump is directly connected to the power supply line under a specific vehicle running state, the fuel pump repeats the discharge operation. Accordingly, it is possible to increase the discharged amount per unit time without enlarging the fuel pump.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-346358 | Dec 1998 | JP | national |
This application is a divisional of application Ser. No. 09/456,477, filed on Dec. 7, 1999 now U.S. Pat. No. 6,553,972, the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. §120; and this application claims priority of Application No. HEI-10-346358 filed in Japan on Dec. 7, 1998 under 35 U.S.C. §119.
Number | Name | Date | Kind |
---|---|---|---|
4554634 | Shinoda | Nov 1985 | A |
4756291 | Cummins et al. | Jul 1988 | A |
4800859 | Sagisaka et al. | Jan 1989 | A |
4919102 | Iwabuchi | Apr 1990 | A |
4932387 | Flam et al. | Jun 1990 | A |
5092302 | Mohan | Mar 1992 | A |
5293299 | Iwabuchi et al. | Mar 1994 | A |
5313923 | Takeuchi et al. | May 1994 | A |
5502963 | Inaba | Apr 1996 | A |
5555872 | Takeuchi et al. | Sep 1996 | A |
5579738 | Frischmuth et al. | Dec 1996 | A |
5752490 | Rodgers et al. | May 1998 | A |
5937829 | Endou | Aug 1999 | A |
6053147 | Hemmerlein et al. | Apr 2000 | A |
6553972 | Yamamoto et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
36 10 064 | Oct 1986 | DE |
43 12 952 | Oct 1994 | DE |
2-31566 | Aug 1990 | JP |
6-14069 | Apr 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20030188719 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09456477 | Dec 1999 | US |
Child | 10417121 | US |