I. Field of the Invention
The present invention relates generally to pumps and, more particularly, to a fuel pump for an internal combustion engine and, particularly, a direct injection internal combustion engine.
II. Description of Related Art
There are different types of internal combustion engines used to propel automotive vehicles. However, direct injection internal combustion engines are becoming increasingly more common due to their fuel efficiency.
In a direct injection internal combustion engine, the fuel injector is open directly to the combustion chamber rather than upstream from the intake valves as in the previously known multipoint fuel injectors. Since the fuel injectors are open directly to the cylinders or combustion chambers of the engine, the fuel injectors are subjected to high pressure. As such, it is necessary to supply fuel to the fuel injector at a pressure which is not only sufficient to overcome the pressure of the internal combustion chamber, but also to atomize the fuel injection.
In order to provide high-pressure fuel to the fuel injectors, the previously known direct injection internal combustion engines have utilized a piston pump having a piston mounted in a pump chamber. Upon the intake stroke of the piston, the piston inducts fuel into the fuel chamber from a fuel source, such as a fuel tank. Conversely, upon the compression stroke of the piston, the piston extends into the pump chamber and pumps fuel out through a one-way check valve to a fuel outlet for the pump. This fuel outlet, in turn, is connected to a fuel rail which supplies the fuel to the fuel injectors for the engine.
One disadvantage of these previously known fuel pumps for direct injection engines, however, is that the aggressive pressure profile of the pump piston causes a water hammer effect when the check valve at the pump outlet opens and closes. This water hammer effect creates excessive noise, particularly at low engine speeds where the noise is much more noticeable to occupants of the vehicle.
A still further disadvantage of these previously known pumps for direct injection engines is that it is necessary to convert the rotational force of the cam into a linear force for the pump piston. This motion conversion results in excessive power consumption by the pump. This power consumption, of course, must be sustained by the engine thus resulting in a reduced engine efficiency.
A still further disadvantage of these previously known piston pumps for direct injection engines is that the force of the cam on the pump piston may result in material fatigue and pump failure after extended operation.
Patent Literature: US 2009/0208357 A1 and US 2009/0120412 A1
The present invention provides a fuel pump for an internal combustion engine, and especially a direct injection internal combustion engine, which overcomes all of the above-mentioned disadvantages of the previously known pumps.
In brief, the fuel pump of the present invention comprises a housing which defines a pump chamber. Both a driven and an idler toothed gear are rotatably mounted within the pump chamber so that the driven and idler gears are in mesh with each other at a predetermined location in the pump chamber.
A fuel inlet is formed through the pump chamber and is open to an inlet subchamber on one side of the meshed driven and idler gears. Similarly, a fuel outlet is formed through the housing and is open to an outlet subchamber positioned in the housing chamber on the other side of the meshed driven and idler gears.
A pressure relief passageway, preferably formed through the housing, fluidly connects the inlet subchamber to the outlet subchamber. A valve is disposed in series with the pressure relief passageway and a control circuit controls the actuation of the valve between an open and a closed position.
In operation, the drive gear is rotatably driven by the engine in synchronism with the engine output shaft. The drive gear in turn rotatably drives the idler gear and pumps fuel from the inlet subchamber to the outlet subchamber. The outlet subchamber in turn is fluidly connected through a one-way check valve to the fuel rail for the engine.
In order to create the desired fuel pump pulsations corresponding to the fuel injectors, the control circuit selectively opens the pressure relief passageway which relieves pressure from the outlet subchamber to the inlet subchamber. Furthermore, the control circuit accurately controls the fuel pressure in the fuel rail by altering the timing and/or duration of the valve actuation in order to accommodate different engine operating conditions. In this fashion, the pressure relief valve is able to maintain constant fuel pressure during each fuel pressure pulsation at all different engine operating conditions.
In order to reduce the power consumption and workload of the pressure relief valve, preferably at least one tooth of both the driven and idler gears is notched so that, when the notched gears are in mesh with each other, a fluid passageway is formed through the notches which fluidly connects the outlet subchamber to the inlet subchamber and thus relieves pressure from the outlet subchamber.
The notches in the driven and idler gears are angularly oriented in the pump chamber so that the notched teeth are in mesh immediately after each fuel injection. Preferably, the number of notched teeth on both the driven and idler gears is equal to one half the number of cylinders in the internal combustion engine. Since there is only fuel injection for every two revolutions of the driven and idler gears, the notches create a pressure pulsation for each fuel injection of the four cycle internal combustion engine.
A better understanding of the present invention will be had upon reference to the following detailed description when read in conjunction with the accompanying drawing, wherein like reference characters refer to like parts throughout the several views, and in which:
With reference first to
In order to supply fuel to the fuel injectors 22, a fuel pump 24 has an inlet 26 fluidly connected to a fuel tank 28 by a fuel supply line 30. An outlet 32 from the fuel pump 24 is fluidly connected by a fuel line 33 to a fuel rail 34 which, in turn, is fluidly connected to the fuel injectors 22. An engine control unit (ECU) 23 controls both the timing and duration of activation of the fuel injectors 22 during the operation of the engine 20.
With reference now to
A driven gear 44 and an idler gear 46 are both rotatably mounted within the pump chamber 38 so that the gears 44 and 46 are in mesh at a predetermined location 48 in the pump chamber 38. This predetermined position 48 or mesh position is preferably generally in the center of the pump chamber 38.
The driven gear 44 is rotatably driven in synchronism with the engine drive shaft. Since the driven gear 44 is in mesh with the idler gear 46, the driven gear 44 rotatably drives the idler gear 46 in synchronism with the driven gear 44. Both the driven gear 44 and idler gear 46, which are preferably substantially identical in shape to each other, include a plurality of circumferentially spaced teeth. These gears 44 and 46, furthermore, are dimensioned so that the outer periphery of the teeth is positioned closely adjacent the ends 40 and 42 of the pump chamber 38 during rotation.
Still referring to
Similarly, an outlet passageway 54 is formed through the housing 36 and fluidly connects an outlet subchamber 56 to the pump outlet 32. The outlet subchamber 56 is part of the pump chamber 38 on the side of the meshed position 48 of the gears 44 and 46 opposite from the inlet subchamber 52.
A one way check valve 58 is provided in the fuel outlet passageway 54. The check valve 58 prevents a reverse flow of fuel from the fuel rail back into the pump chamber 38.
A pressure relief passageway 60 extends between and fluidly connects the outlet subchamber 56 with the inlet subchamber 52. This pressure relief passageway 60 is illustrated in the drawing as formed through the pump housing 36. However, the pressure relief passageway 60 may alternatively extend exteriorly of the pump housing 36.
A valve 62 is fluidly connected in series with the pressure relief passageway 60. The valve 62 is preferably actuated by an electromagnetic actuator 64 under control of the control circuit 23. The control circuit 23 controls both the timing and duration of actuation of the valve 62.
The valve 62 is movable between a closed position and an open position, illustrated in solid and phantom line in
The valve 62 shown in
With reference now to
In order to reciprocally drive the piston, a multi-lobe cam is rotatably driven in synchronism with the drive shaft from the engine. The outer surface of the cam mechanically engages the piston so that, upon rotation of the cam, the piston is reciprocally driven in the pump chamber. Consequently, upon rotation of the cam, a series of pressure pulsations are formed at the pump outlet with each pressure pulsation synchronized with a lobe on the cam.
Direct injection engines are four-cycle engines so that there is one combustion cycle for each two reciprocations of a piston within its cylinder. Consequently, the number of lobes on the cam for the pump is equally to one half the number of cylinders so that each pressure pulsation from the fuel pump is synchronized with one fuel injection.
Preferably, the number of notches 66 and 67 formed in each gear 44 and 46, respectively, is equal to one half the number of cylinders in the engine. Consequently, one pair of spaced notches 66 and 67 will register with each other and relieve pressure from the outlet subchamber 56 to the inlet subchamber 52 in synchronization with each engine combustion.
The number of spaces made by the notches 66 and 67 on each gear 44 and 46, respectively, is equal to one half the number of cylinders in the engine. The number of spaces made by the notches 66 and 67 is also possible to equal to the number of cylinders in the engine. By matching the number of notch spaces with the number of cylinders, fuel injection is synchronized with the cycle of the pressure controlled by the spaces. Furthermore, the notches 66 and 67 on each gear 44 and 46 are equidistantly angularly spaced from each other. Consequently, the angular spacing between adjacent notches on each gear 44 and 46 is equal to 360 degree divided by one half the number of cylinders in the engine.
For example, for a six-cylinder engine, a notch is provided through three teeth in both the driven gear 44 and idler gear 46. These notches are angularly equidistantly spaced from each other and thus are circumferentially spaced by 120 degrees. Conversely, for an eight-cylinder engine, four notches are provided through both the driven gear 44 and idler gear 46 and these notches are spaced apart from each other by 90 degrees, or two notches are provided through both the driven gear 44 and idler gear 46 and these notches are spaced apart from each other by 180 degrees, and so on.
With reference now to
Referring to
At time t2 the electromagnetic driving signal 74 is terminated thus allowing the valve 62 to return to its closed position. In addition, at time t2 the notches 66 have moved out of registration with each other. This causes the fuel pressure 128 (
The pressure in the outlet subchamber 56 remains at the high pressure P2 during the fuel injection into the engine. At the end of that high pressure period at time t3, the notches 66 again register with each other and, simultaneously, the electromagnetic actuator driving signal 124 is activated thus opening the valve 62 and causing a pressure drop back to pressure P1 after which the above cycle is repeated. The timing of the fuel injection is synchronized with the pressurized time prior to the registration of the spaced notches.
With reference now to
At step 84, the basic signal off timing for the valve 62 is determined as a function of the injection quantity and engine speed of the engine. Step 84 then proceeds to step 86.
At step 86, the ECU calculates the difference between the actual fuel pressure in the fuel rail and the target fuel pressure. Step 86 then proceeds to step 88 where the ECU corrects or modifies the basic valve actuator timing 124 for the valve actuator 64 in order to reduce the difference between the actual fuel pressure and the target fuel pressure. Step 88 then proceeds to step 90 and outputs the signal off timing and thus closure of the valve 62. Step 90 then proceeds to step 92 and terminates the procedure until the next valve actuation.
The pressure in the output subchamber 56 of the pump 24 may be controlled to accommodate different engine operating conditions by varying the initiation and/or duration of the actuation of the valve actuator 64. Consequently, by varying the duration of the valve actuation, the pressurization of the pump output may be adjusted to achieve a target value as determined by the ECU.
With reference now to
Referring to
With reference now to
Referring to
A modification is shown in
With reference now to
With reference now to
Step 188 differs from step 88 in
With reference now to
From the foregoing, it would be seen that the present embodiment provides an effective fuel pump for an internal combustion engine and, particularly, for a direct injection internal combustion engine which not only reduces noise caused by water hammer, but also material fatigue. Furthermore, the present embodiment allows careful control of the output pressure from the pump to meet a target pressure by merely adjusting the duration of the opening or closure of the valve 62 or 162, respectively, as a function of different engine operating conditions.
Although the valve 62 or 162 may, alone, be sufficient to control the output pressure from the pump, in the preferred embodiment the notches 66 and 69 formed in the driven gear 44 as well as the idler gear 46, respectively, are employed to reduce the pressure in the outlet subchamber in synchronism with the fuel injection by the fuel injectors. The addition of the notches effectively reduces the power consumption by the valve actuator 64 as well as mechanical wear and tear on the valves.
Having described our invention, however, many modifications thereto will become apparent to those skilled in the art to which it pertains without deviation from the spirit of the invention as defined by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2088882 | Trimmer | Aug 1937 | A |
2365636 | Hedges | Dec 1944 | A |
2669840 | Joy | Feb 1954 | A |
2742862 | Banker | Apr 1956 | A |
2845031 | Guibert | Jul 1958 | A |
3385276 | Reiners et al. | May 1968 | A |
3981646 | Bottoms | Sep 1976 | A |
5224839 | Cardillo | Jul 1993 | A |
6102005 | Kasen et al. | Aug 2000 | A |
6135090 | Kawachi et al. | Oct 2000 | A |
6488479 | Berger | Dec 2002 | B1 |
6837123 | Hawkins | Jan 2005 | B2 |
7263972 | Tokuda et al. | Sep 2007 | B2 |
20050112012 | Marheineke | May 2005 | A1 |
20090041594 | Yokoi | Feb 2009 | A1 |
20090120412 | Tokuo et al. | May 2009 | A1 |
20090208357 | Garrett | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
415.071 | Sep 1910 | FR |
2 854 220 | Oct 2004 | FR |
2 888 895 | Jan 2007 | FR |
56083589 | Jul 1981 | JP |
S5683589 | Jul 1981 | JP |
Entry |
---|
European Search Report dated Jul. 2, 2013; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130243636 A1 | Sep 2013 | US |