The present invention relates generally to automotive fuel pumps, and more particularly relates to a regenerative fuel pump having a rotary impeller.
Regenerative fuel pumps have been widely used in automotive applications because of the low specific speed number (ratio of diameter and flow rate versus pressure), quiet operation, good handling of hot fuel, and durability. These regenerative fuel pumps generally include an impeller rotating on a shaft and positioned within an impeller chamber in the pump. The clearance between the opposing axial sides of the impeller and the corresponding walls of the impeller chamber must be closely regulated to permit the pump to handle fuel at relatively high pressures (i.e. greater than about 2 bar). The impellers are typically double sided impellers, meaning the impellers include vanes on each opposing side which have vanes positioned therein for pressurizing fuel on both sides of the impeller. In this manner, the impellers are relatively well balanced axially to maintain the necessary clearance for pumping high pressure fuel.
One drawback of these fuel pumps is that their wet circle index is relatively high, typically 1.7 or greater. The wet circle index is an index for the pump boundary layer and friction losses. The wet circle index can be defined as the wet circle length versus the flow channel cross-sectional area. That is, the wet circle length is the distance along the perimeter of the flow channel (i.e. circumference of a round flow channel), the follow channel being formed by both the impeller and the structures (e.g. body and cover structures) on opposing sides of the impeller.
Accordingly, there exist a need for a fuel pump with robust axial clearance requirements to permit pumping of high pressure fluid in an automotive environment, while at the same time having a lower wet circle index to reduce friction losses and improve the efficiency of the pump.
The present invention provides a fuel pump that improves the pump efficiency by lowering the wet circle index of the pump while maintaining robust axial clearances to meet the demands of an automotive application. One embodiment of the invention includes a fuel pump for pressurizing fuel for delivery to an engine of a motor vehicle. The fuel pump generally comprises a housing, a motor, a single sided impeller, a cover and a body. The provision of a single sided impeller greatly reduces the wet circle index and improves the pump efficiency.
According to more detailed aspects, the motor is situated in the housing and drives a shaft. The impeller is connected to the shaft for rotation as well as for axial translation relative to the shaft. That is, the impeller is free floating on the shaft. The cover includes a flow channel which is aligned with a flow channel formed in the impeller, rotation of the impeller and its vanes pressurizing the lower pressure fuel provided at an inlet end of the cover flow channel, which is forced to an outlet end of the cover flow channel. The body defines an outlet passageway positioned radially outwardly from the impeller chamber to fluidically connect to the outlet end of the cover flow channel, thereby receiving higher pressure fuel for delivery to the engine.
The impeller is free floating on the shaft and is subjected to a cover-side force from fuel in the cover flow channel and the impeller flow channel, as well as a body-side force from fuel in the outlet passageway. The outlet passageway is at least partially exposed to the body side of the impeller, and the exposed area is sized to provide a body side axial force approximately equal to the cover-side axial force. In this way, the impeller is balanced on the shaft to provide robust axial clearances for pumping higher pressure fuel.
According to still further details, the exposed area on the body-side of the impeller is less than the area of the cover-side of the impeller exposed to the cover flow channel, as the pressure on the body-side is generally greater than the average pressure on the cover-side of the impeller. Additionally, one or both of the body and the cover may define pressure balance channels in fluidic communication with either high or low pressure fuel, which can be adjusted to provide a balanced impeller. The pressure balance channels may take many forms and may be positioned at various radial and circumferential positions.
In this way, the fuel pump of the present invention allows the impeller to maintain an axial clearance between the cover and the impeller that is less than or equal to 50 micron by sizing the area of the cover-side surface of the impeller that is exposed to fluid in relation to the area of the body-side surface of the impeller that is exposed to fuel. Likewise, the impeller maintains an axial clearance between the cover that is sufficient to pressurize fuel to at least 2 bar. Notably, the fuel pump does not require a bearing or other structural component to maintain the necessary clearance between the cover and the impeller.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:
Turning now to the figures,
As shown in
Turning now to
The body 70 generally includes a body surface 72 facing axially towards the impeller 50. The body 70 defines an outlet 74 through which pressurized fuel flows for ultimate delivery to the engine. The body 70 also defines a central aperture 76 having a bearing 75 through which the shaft 26 extends for connection to the impeller 50. The body 70 includes a peripheral rim 78 which defines an impeller chamber 80 therein. That is, the peripheral rim 78 and the body surface 72 define an impeller chamber 80 that is sized to receive the impeller 50, as best seen in
The opposing sides of the cover 30, impeller 50 and body 70 are shown in the exploded view of
It will also be recognized from
An enlarged view of the cover 30 is shown in
The flow pathway(s) through the cover 30, impeller 50 and body 70 will now be described with reference to the cross-sectional views of
Turning to
Accordingly, by way of the present invention, a more efficient pump 20 is provided by the provision of a single sided impeller 50. The cover flow channel 38 and impeller flow channel 58 are sized to provide a pump 20 which is capable of pumping the same volume of fluid as a comparable pump having a double sided impeller, while at the same time employing a single sided impeller that reduces the wet circle index, and hence losses to friction.
However, a predetermined clearance must be maintained between the impeller 50 and the cover 30 and body 70. In particular, the application of the pump 20 to a motor vehicle requires that the fuel is pressurized to a relatively high level, namely about 2 bar or above. Thus, an axial clearance of about 50 micron (or 0.05 mm) or less must be maintained between the impeller 50 and the cover 30 and body 70. That is, the cover-side surface 52 of the impeller 50 must be maintained within 50 micron (axially) of the cover surface 32 of the cover 30 to be capable of pressurizing fuel to 2 bar or greater.
Unfortunately, the impeller 50 cannot be fixed on the shaft 26. In the harsh environment of a motor vehicle, the fuel pump 20 will be subjected to continuous and repeated operation which causes wear on the thrust button supporting the shaft 26. Thus, over the life of the pump 20, the shaft 26 may shift its position, making it impossible to maintain the ideal clearance between the impeller 50 and the cover 30. Thus, the automotive environment of the pump requires the impeller 50 to be free floating on the shaft 26.
Therefore, the pump 20 according to the teachings of present invention regulates the area of the impeller 50, and in particular the area of the body-side surface 53, that is exposed to the higher pressure fuel in the outlet passageway 82. This is best seen in the cross-sectional view of
For example, if lower pressure fluid is provided at the inlet end 40 at about 0 bar, and is pressurized by the pump 20 to a pressure of about 4 bar at the outlet end 42, the average pressure in the cover flow channel 38 can be estimated to be 2 bar. In this example, the higher pressure fuel in the outlet passageway 82 of the body 70 is thus also about 4 bar. Accordingly, the area of the impeller 50 (and in particular the body side surface 53) which is exposed to the outlet passageway 82 is controlled in relation to the exposed area corresponding to the cover flow passageway 38, thereby providing a generally balanced force on opposing sides of the impeller 50. Stated another way, the impeller 50 is subject to a cover-side force and a body-side force, which are designed to be approximately equal.
As used herein, the terms about, approximately, generally and the like, when used in relation to the forces and pressures on the impeller 50, encompass the fact that the actual pressure within the cover flow channel 38 may vary depending upon particular conditions (e.g. pulsations or other pressure variations) which in turn causes the opposing axial forces on the impeller 50 to vary, which in turn causes the impeller 50 to float on the shaft 26, and is known in the art. In our example, the exposed area of the body-side surface 53 of the impeller 50 is approximately one half of the exposed area on the cover-side surface 52 of the impeller 50. In this way, the impeller 50 is allowed to translate axially along the shaft 26 to accommodate pressure variations, while at the same time maintaining an appropriate axial clearance of about 50 micron or less to ensure the ability of the pump to pressurize fuel to high pressure, namely about 2 bar or greater.
It will be recognized by those skilled in the art that additional structures may be employed in the cover 30, impeller 50 and/or body 70 in order to facilitate the balancing of the impeller 50 along the shaft 26. Several of numerous embodiments for the cover 30 and body 70 have been depicted in
It will also be noted that the pressure balance channel 48 is circumferentially aligned with the inlet end 40 of the cover flow channel 38. This construction is employed so that the cover-side force on the impeller 50 is balanced over the entire cover-side area of the impeller 50 (i.e. balancing higher and lower forces). Thus, the pressure balance channel 48 (filled with higher pressure fluid) is aligned with the portion of the cover flow channel 38 having lower pressure fuel (i.e. the inlet end 40). The pressure balance channel 48 extends about 180° or less around the cover 30, but could extend more. It will also be seen that the narrow linking portion 49 of the pressure balance channel 48 is positioned in circumferential alignment with the strip portion 44 of the cover 30.
Turning to
With reference to
Accordingly, those skilled in the art with recognize that the present invention, as described by the numerous embodiments constructed in accordance with the teachings herein, provides a fuel pump which reduces the wet circle index and increases the efficiency of the pump. A single sided impeller which is free floating on the shaft assists in increasing the efficiency. At the same time, the impeller is balanced along the drive shaft and maintains an axial clearance between the cover and body that is less than about 50 micron, thereby allowing the fuel pump to be applied and the harsh environment of a motor vehicle and to pump fuel at pressures of 2 bar or greater as is required by the conditions of operation.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. For example, all of the flow channels and pressure balance channels formed in any of the cover 30, impeller 50 or body 70 can be of any cross-sectional shape such as square, rectangular, semicircular, semioval, semielliptical, etc. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
1619286 | Burks | Mar 1927 | A |
1861837 | Burks | Jun 1932 | A |
1861838 | Burks | Jun 1932 | A |
2396319 | Edwards et al. | Mar 1946 | A |
3360193 | Harris et al. | Dec 1967 | A |
3392675 | Taylor | Jul 1968 | A |
3395853 | Zoehfeld | Aug 1968 | A |
3506373 | Danker et al. | Apr 1970 | A |
3836291 | Bottcher et al. | Sep 1974 | A |
3871797 | Igarashi et al. | Mar 1975 | A |
3873243 | Nusser et al. | Mar 1975 | A |
4295797 | Ruhl et al. | Oct 1981 | A |
4336002 | Rose et al. | Jun 1982 | A |
4462761 | Ringwald | Jul 1984 | A |
5364228 | Henning et al. | Nov 1994 | A |
5487650 | Gaston et al. | Jan 1996 | A |
5513950 | Yu | May 1996 | A |
5569023 | Ishida et al. | Oct 1996 | A |
5762469 | Yu | Jun 1998 | A |
6068454 | Gaston et al. | May 2000 | A |
6116850 | Yu | Sep 2000 | A |
6162012 | Tuckey et al. | Dec 2000 | A |
6174128 | Yu | Jan 2001 | B1 |
6210102 | Yu et al. | Apr 2001 | B1 |
6270310 | Gaston et al. | Aug 2001 | B1 |
6296439 | Yu et al. | Oct 2001 | B1 |
6299406 | Yu et al. | Oct 2001 | B1 |
6527505 | Yu et al. | Mar 2003 | B2 |
6641361 | Yu | Nov 2003 | B2 |
6669437 | Yu et al. | Dec 2003 | B2 |
6688844 | Yu | Feb 2004 | B2 |
7008174 | Yu et al. | Mar 2006 | B2 |
Number | Date | Country |
---|---|---|
61175297 | Aug 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20050249617 A1 | Nov 2005 | US |