This application generally relates to vehicle fuel delivery systems and more particularly relates to control systems for variable speed fuel pumps.
Vehicle fuel pump systems commonly employ an electric motor coupled to a mechanical pump for pumping fuel from a fuel reservoir to an engine. Although it is possible to simplify the fuel system controls by operating the electric motor at a sufficiently high speed such that the pump will meet the greatest, fuel demand imposed by the engine, such a simplistic approach may degrade the fuel efficiency of the vehicle (by wasting electrical energy) and adversely effects the life expectancy of the components in the fuel delivery system. In order to operate a fuel delivery system as efficient as possible, it is common for the fuel control system to monitor one or more engine parameters indicative of the real time fuel demand of the engine. Under this controlled, approach, the fuel control system can operate the motor at slower speeds when the fuel demand of the engine is minimal or moderate and the control system can operate the pump motor at higher speeds when the fuel consumption demand of the engine is high. Although such control systems are effective for enhancing the efficiency and life expectancy of the components of the fuel delivery system, they require extra complexity, such as tying the fuel delivery system to the engine or engine control system. This complexity not only increases development costs, but it also increases the cost of implementing the system inasmuch as additional electrical conductors, connectors, and other components must be incorporated into the fuel delivery system.
The present invention provides, among other things, a variable speed motor coupled to a fuel pump, without requiring interconnection of the fuel system to the engine or engine control system for sensing the fuel demands of the engine.
Now referring to
Fuel system 14 may use electric power provided from power source 20 (typically a battery or the like), to provide electrical operating power to motor 22 and to the electrical components (motor controller 24, signal conditioning module 26, and possibly environmental noise transducer 28) used to control the speed of motor 22. Fuel pump 32 and motor 22 may be packaged together 30 and reside within a fuel storage cavity of fuel tank 16. Although this packaging methodology is common, nothing in the present invention is limited to only this packaging convention and the present invention may be used in systems where only one of the pump 32 or the motor 22 resides within the fuel storage cavity of the fuel tank 16. It is also possible to locate both the fuel pump 30 and the motor 22 outside of the fuel tank 16 and rely on gravity or other means (such as a pump vacuum) to deliver the fuel from fuel tank 16 to pump 32.
Motor controller 24, signal conditioning module 26, and, if included, an environmental noise transducer 28, can reside in any portion of the vehicle and still function to carry out an embodiment of the present invention. However, for many embodiments, it may be advantageous to fit all three components (motor controller 24, signal conditioning module 26, and environmental noise transducer 28) within a single connector housing 34 which may, in turn, function as an electrical connector to mate with a receiving/mating electrical connector 36. Connector 36 conveys appropriate electrical signals from connector 34 to motor 22. By integrating motor controller 24, signal conditioning module 26, and, if present, an environmental noise transducer 28, within a single connector housing 34, most of the electrical components that comprise fuel system 14 are conveniently located in a single wiring connector 34. This packaging approach not only minimizes the handling and inventorying of numerous, discrete components, it also minimizes electrical connections that would otherwise be exposed to environmental conditions that might eventually compromise the operation of motor controller 24, signal conditioning module 26, or environmental noise transducer 28.
Now referring to
The output 42 of motor controller 24 may be directly coupled to motor 22 (by way of connector 36) and it is used to control the speed of fuel pump motor 22. Motor controller 24 may be of the type that employs pulse width modulation (hereinafter PWM) motor control. However, other motor control methodologies known to those skilled in the art may also be used to control the rotational speed of motor 22.
Now referring to
In instances where the output signal of environmental noise transducer 28 (after it is conditioned by module 26) is below a preset noise threshold level (such as depicted at t1 in
In periods of operation when engine 12 is required to deliver more horsepower, the output signal from signal conditioning module 26 will cross (shown at t2), and reside above preset road noise threshold level (see the time duration span between t2 and t3 in
Although the present invention has been discussed in the context of operating fuel pump motor and pump assembly 30 at two operational speeds (i.e. SP1, and SP2), it is fully contemplated that three or more command speeds may be used for carrying out the invention and that improved efficiencies may be realized by using three or more motor speed command levels. Additionally, although an embodiment of the present invention has been discussed in the context of using discrete steps between motor speed command SP1 and motor speed command SP2, it is contemplated that the differences between adjacent, discrete steps can be made infinitesimally small such that the motor speed command achieved at output 42 allows infinitely variable (or near infinitely variable) speed adjustment for fuel pump motor and pump assembly 30.
Having described various embodiments of the present, invention, it will be understood that various modifications or additions may be made to the embodiments illustrated herein without departing from the spirit of the present invention. For example, environmental transducer 28 has been disclosed herein in the form of a microphone, an accelerometer, or combinations of the two. However, it is contemplated that other types of environmental transducers can be used for carrying out the present invention. Accordingly, it is to be understood that the subject, matter sought to be afforded protection hereby shall be deemed to extend to the subject matter defined in the appended claims, including all fair equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 60/782,421, filed on Mar. 15, 2006. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4237836 | Tanasawa et al. | Dec 1980 | A |
4320662 | Schaub et al. | Mar 1982 | A |
4577604 | Hara et al. | Mar 1986 | A |
4800859 | Sagisaka et al. | Jan 1989 | A |
4940034 | Heim et al. | Jul 1990 | A |
5113621 | Grimes | May 1992 | A |
5513614 | Gras et al. | May 1996 | A |
6087796 | Canada et al. | Jul 2000 | A |
6223731 | Yoshiume et al. | May 2001 | B1 |
6453878 | Mazet | Sep 2002 | B1 |
6932055 | Rado | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20080202476 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60782421 | Mar 2006 | US |