Information
-
Patent Grant
-
6802297
-
Patent Number
6,802,297
-
Date Filed
Monday, January 27, 200321 years ago
-
Date Issued
Tuesday, October 12, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 456
- 123 447
- 123 463
- 123 465
- 138 26
- 138 30
-
International Classifications
-
Abstract
A fuel rail damper, which includes a hollow member having a first end and a second end, and at least one active portion. The hollow member being open to atmospheric pressure, thereby defining a chamber in conjunction with the at least one active portion.
Description
TECHNICAL FIELD
The present invention relates to fuel rail assemblies and, more particularly, to fuel rail damping devices wherein the damper is open to atmosphere.
BACKGROUND OF THE INVENTION
Many modern automobiles incorporate fuel injected engines which require a high-pressure fuel feed upstream of the fuel injectors. The fuel injection system incorporates a plurality of injectors that deliver fuel to the inlet ports of the engine. The injectors are mounted in a fuel rail that supplies high-pressure fuel to the inlet side of the injectors. Most fuel injected engines use electromagnetic fuel injectors, one injector per cylinder, which deliver fuel in metered pulses that are timed to provide the amount of fuel, needed in accordance with the operating condition of the engine.
The cyclic operation of the electromagnetic injectors induce pressure pulsations in the fuel rail which may have a detrimental affect on the operation of the fuel metering system. To reduce the effect of the pressure pulsations, automotive designers have incorporated dampers into the fuel system. Damping systems known in the art add compliance to the fuel injection system by adding devices such as internal rail damping systems or external rail damping systems.
One type of external damping system incorporates a spring diaphragm device; an o-ring sealed interface to the rail, a retaining clip, as well as multiple stamped parts that form the interface to the rail. Internal damping systems that provide a closed and atmospherically pressurized vessel within the fuel rail have fewer parts than an external damping system. However, in the conventional internal damping system, the damper must be assembled into the rail after the components of the rail are brazed together since the extreme temperatures in the braze furnace would cause the air trapped in the damper to expand and thereby cause permanent deformation of the damper walls and render the damper ineffective. The necessary post-braze assembly operation of the damper to the fuel rail adds labor, and additional parts including an o-ring sealed end plug and a retaining clip. This may also increase costs and reduce reliability of the fuel rail assembly. U.S. Pat. No. 5,617,827 issued to Eshleman et al. on Apr. 8, 1997, the disclosure of which is incorporated herein by reference, discloses a fuel rail that includes a conventional internal fuel rail damper.
What is needed in the art is an internal damper which can endure the temperatures of the brazing operation and therefore can be assembled into the fuel rail before the brazing process is completed.
SUMMARY OF THE INVENTION
A fuel rail damper which includes a hollow member having a first end and a second end, and at least one active portion. At least one of the first and second ends being open to atmospheric pressure and extending outside the fuel rail to thereby define a chamber in conjunction with the active portion.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features and advantages of the invention will be more fully understood and appreciated from the following description of certain exemplary embodiments of the invention taken together with the accompanying drawings, in which:
FIG. 1
is a side view of a first embodiment of a fuel rail damper of the present invention;
FIG. 2
is a top view of the fuel rail damper of
FIG. 1
;
FIG. 3
is a perspective view of the fuel rail damper of
FIG. 1
prior to closing the end thereof;
FIG. 4
is an end view of
FIG. 3
;
FIG. 5
is a cut-away view of a fuel rail having the fuel rail damper of
FIG. 1
operably installed therein;
FIG. 6
is a side view of a second embodiment of a fuel rail damper of the present invention;
FIG. 7
is a is a top view of the fuel rail damper of
FIG. 6
;
FIG. 8
is a perspective view of the fuel rail damper of
FIG. 6
;
FIG. 9
is an end view of
FIG. 6
;
FIG. 10
is a cut-away view of a fuel rail having the fuel rail damper of
FIG. 6
operably installed therein, and
FIG. 11
is a cut-away view of the fuel rail in
FIG. 10
wherein both ends of the fuel rail damper are closed.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Generally, and as will be more particularly described hereinafter, the fuel rail damper of the present invention is installed within a fuel rail of an internal combustion engine. The fuel rail damper acts to reduce pressure pulsations that occur within the fuel rail as a result of the operation of fuel injectors in fluid communication with the fuel rail.
More specifically, the concept of the present invention is to allow one or more ends of the damper to protrude through the end cap of the fuel rail and allow that end to reference the atmosphere, and hence, atmospheric pressure. The flexible walls of the damper are then exposed to fuel pressure on one side and air at atmospheric pressure on the other. However, since the air is not trapped inside the damper as a sealed vessel, as in the prior art, the air's expansion due to heating during brazing of the fuel rail, does not exert a force on the damping surfaces to permanently deform the damper walls. The open end or ends of the rail may be sealed after the brazing operation by weld or other means as best seen in
FIG. 11
, or simply left open.
Referring now to the drawings, and particularly to
FIGS. 1 and 2
, there is shown a first embodiment of the invention where damper
10
is generally and elongate member and one end of damper
10
is closed. Fuel rail damper
10
includes a hollow member
12
having first end
14
and second end
16
. End
14
is sealed in a fluid tight manner, such as, for example, by welding, brazing or other suitable means, which may include a separately formed cap (not shown) to thereby define a plenum
20
having a closed end
15
and an open end
17
. Hollow member
12
is, in this embodiment substantially rectangular in cross-section. Hollow member
12
includes walls
12
a
,
12
b
and sides
12
c
,
12
d
. Walls
12
a
and
12
b
are relatively wide compared to sides
12
c
,
12
d
. At least one of walls
12
a
,
12
b
include active portion
13
(one shown) of fuel rail damper
10
. Active portion(s)
13
act to absorb and slow pressure pulsations occurring in the fuel rail
30
(FIG.
5
). Hollow member
12
is constructed of, for example, stainless steel, low carbon steel, aluminum, or other suitable material that is substantially impervious to gasoline and/or fuel vapor.
Hollow member
12
is a one-piece fabricated member. Some possible ways of fabricating hollow member
12
include; a rolled weld process, a rolled weld and mandrel drawn process, or extrusion process, of flat stock or round tubing of the raw materials referred to above.
As shown in
FIGS. 3 and 4
, hollow member
12
may be provided at first end
14
with recesses
14
a
,
14
b
, formed, for example, by stamping or rolling, in sides
12
c
and
12
d
. Each of recesses
14
a
,
14
b
are generally wedge-shaped in that the width increases with proximity to first end
14
(see FIG.
3
). In cross-section, each of top and bottom recesses
14
a
,
14
b
are generally parabolic or conical in shape (see FIG.
4
).
As best shown in
FIG. 2
, first end
14
pressed together or flattened, for example, by stamping, in the region proximate top and bottom recesses
14
a
,
14
b
. The pressing or stamping force is applied in a direction that is generally perpendicular to walls
12
a
and
12
b
, and closes the first end
14
. Thereafter, first end
14
is fastened together and sealed, for example, by welding, brazing, or other suitable means. Sealing first end
14
of the area defined by hollow member
12
forms a chamber or plenum
20
within hollow member
12
. The flattened or pressed portion of first end
14
forms tab
24
(
FIGS. 1 and 2
) which can also be used for operably mounting fuel rail damper
10
within fuel rail
30
.
Referring now to
FIG. 5
, there is shown a first embodiment of fuel rail damper
10
of the present invention installed in fuel rail
30
. Fuel rail
30
includes brackets
30
a
,
30
b
by which fuel rail
30
is operably installed, such as, for example, bolted to internal combustion engine (not shown). Fuel rail
30
further includes an elongate tubular member
34
, which defines a passageway
35
for fuel. Tubular member
34
also defines a fuel inlet fitting (not referenced) for receiving fuel and a plurality of fuel injector sockets
36
a
,
36
b
,
36
c
,
36
d
, each of which are in fluid communication with fuel passageway
35
defined by tubular member
34
. Each injector socket
36
a
,
36
b
,
36
c
,
36
d
receives a corresponding fuel injector (not shown). Fuel rail damper
10
is disposed within tubular member
34
, and is centrally retained in place by damper holders
38
a
and
38
b
. Second end
16
of damper
10
protrudes through end
18
of the fuel rail so as to be open to atmospheric pressure. The joint between fuel rail end
18
and damper second end
16
is sealed in a fluid tight manner along periphery
40
, such as, for example, by welding or brazing.
In use, fuel rail damper
10
is disposed within fuel rail
30
and attached to an internal combustion engine (not shown). The sequential operation of the fuel injectors, which are supplied with fuel by the fuel rail, create rapid fluctuations in pressure within the fuel rail and specifically within passageway
35
. The pressure wave created by the pressure fluctuations impact one or both of walls
12
a
,
12
b
of fuel rail
10
. The active portion of walls
12
a
,
12
b
is compliant and flex as a result of the impacting pressure wave, and thereby at least partially absorb the pressure wave. Further, the compliance of walls
12
a
,
12
b
reduce the velocity of the pressure wave, thereby slowing the wave and reducing the magnitude of the pressure pulsation.
Referring now to
FIGS. 6-9
, another embodiment of a fuel rail damper of the present invention is shown. Similar to fuel rail damper
10
, fuel rail damper
110
is of one-piece construction. Further, fuel rail damper
110
is constructed from the same or similar materials and processes as discussed above in regard to fuel rail damper
10
. However, unlike fuel rail damper
10
, fuel rail damper
110
has both first end
114
and second end
116
open thereby defining open ends
117
of plenum
120
.
Fuel rail damper
110
includes a hollow member
112
having first end
114
and second end
116
. Both of the ends are open
117
defining plenum
120
within hollow member
112
. Hollow member
112
, as shown, is substantially rectangular in cross-section. Hollow member
112
includes walls
112
a
,
112
b
and sides
112
c
,
112
d
. Walls
112
a
,
112
b
are relatively wide compared to sides
112
c
,
112
d
. At least one of walls
112
a
,
112
b
include active portion(s)
13
(one shown) of fuel rail damper
110
. Active portion(s)
13
act to absorb and slow pressure pulsations occurring in the fuel rail
130
(FIG.
10
). Hollow member
112
is constructed of, for example, stainless steel, low carbon steel, aluminum, or other suitable material that is substantially impervious to gasoline and/or fuel vapor.
Hollow member
112
is a one-piece fabricated member. Some possible ways of fabricating hollow member
112
include; a rolled weld process, a rolled weld and mandrel drawn process, or extrusion process, of flat stock or round tubing of the raw materials referred to above.
Referring now to
FIG. 10
, there is shown second embodiment of a fuel rail damper
110
of the present invention installed in fuel rail
130
. Fuel rail
130
includes brackets
130
a
,
130
b
by which fuel rail
30
is operably installed, such as, for example, bolted to internal combustion engine (not shown). Fuel rail
130
further includes an elongate tubular member
134
, which defines a passageway
35
for fuel. Tubular member
134
defines a fuel inlet fitting (not shown) for receiving fuel and a plurality of fuel injector sockets
136
a
,
136
b
,
136
c
,
136
d
, each of which are in fluid communication with fuel passageway
35
defined by tubular member
134
. Each injector socket
136
a
,
136
b
,
136
c
,
136
d
receives a corresponding fuel injector (not shown). Fuel rail damper
110
is disposed within tubular member
134
, and is centrally retained in place by damper holders
138
a
and
138
b
. Both ends
114
and
116
of damper
110
protrude through respective ends
118
of fuel rail
130
so as to be open to atmospheric pressure.
In use, fuel rail damper
110
is disposed within fuel rail
130
and attached to an internal combustion engine (not shown). The sequential operation of the fuel injectors, which are supplied with fuel by the fuel rail, create rapid fluctuations in pressure within the fuel rail. The pressure wave created by the pressure fluctuations impact one or both of walls
112
a
,
112
b
of fuel rail
110
. The active portion of walls
112
a
,
112
b
is compliant and flex as a result of the impacting pressure wave, and thereby at least partially absorbs the pressure wave. Further, the compliance of walls
112
a
,
112
b
reduce the velocity of the pressure wave, thereby slowing the wave and reducing the magnitude of the pressure pulsation.
In the embodiments shown, dampers
10
and
110
are disclosed as generally elongate members. However, it is understood that the dampers can be alternately configured such as, for example, in the form of a sphere or an elliptical sphere.
In the embodiments shown, hollow members
12
and
112
are substantially rectangular in cross section. However, it is to be understood that hollow members
12
and
112
can be alternately configured, such as, for example, with an oval or generally triangular cross section having one or any number of active portions.
In the embodiment shown, first end
14
may be stamped flat and extend in a generally parallel manner relative to hollow members
12
. However, it is to be understood that first end
14
can be alternately configured, such as, for example, stamped flat and then folded over and back in a direction toward one of faces
12
a
,
12
b
or simply capped (not shown) in a fluid tight manner.
In the embodiments shown, ends
17
,
117
are shown as being uncapped after being assembled into the fuel rail. It is understood that the ends may be left uncapped or may be closed after assembly using any number of methods including capping or welding of the ends closed.
In the embodiments shown (FIGS.
5
and
10
), damper holders
38
b
,
138
a
and
138
b
are disclosed as being separate from fuel rail ends
18
,
118
. It is understood that the holders and ends may be combined into one feature allowing the one feature to both centrally orient the damper and seal the end of the fuel rail.
While this invention has been described as having preferred designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the present invention using the general principles disclosed herein. Further, this application is intended to cover such departures from the present disclosure as come within the known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Claims
- 1. A fuel rail damper, comprising:a hollow member having a first end and a second end, and at least one active portion, both of said first and second ends being open to the atmospheric pressure, thereby defining a chamber in conjunction with said at least one active portion.
- 2. The fuel rail damper of claim 1, wherein said hollow member comprises a one piece hollow member.
- 3. A fuel rail, comprising:a tubular member defining a passageway for fluid, at least one injector socket defined by said tubular member, each of said at least one injector socket in fluid communication with said passageway, said tubular member configured for being fluidly connected to a fuel supply; and a fuel rail damper including a hollow member disposed within said passageway, said hollow member having at least one wall and at least one active portion, said hollow member defining a chamber in conjunction with said at least one active portion, said chamber being open to atmospheric pressure.
- 4. A fuel rail comprising:a tubular member defining a passageway for fluid, at least one injector socket defined by said tubular member, each of said at least one injector socket in fluid communication with said passageway, said tubular member configured for being fluidly connected to a fuel supply; and a fuel rail damper including a hollow member disposed within said passageway, said hollow member having a first end and a second end, and at least one active portion, at least one of said first and second ends being open to atmospheric pressure, thereby defining a chamber in conjunction with said at least one active portion.
- 5. The fuel rail of claim 4, wherein said hollow member comprises a one piece hollow member.
- 6. The fuel rail of claim 4, further comprising both of said first and second ends being open to the atmosphere.
- 7. The fuel rail damper of claim 4, further comprising one of said first and second ends being sealed in an air tight manner.
- 8. The fuel rail damper of claim 4, further comprising one of said first and second ends being closed.
- 9. A method of making a fuel rail comprising:forming a tubular member defining a passageway for fluid, with at least one injector socket defined by said tubular member, each of said at least one injector socket in fluid communication with said passageway, said tubular member configured for being fluidly connected to a fuel supply; forming a fuel rail damper including a hollow member disposed within said passageway, said hollow member having at least one wall and at least one active portion, said hollow member being open to atmospheric pressure, at least during assembly, thereby defining a chamber in conjunction with said at least one active portion.
- 10. A method of making a fuel rail comprising:forming a tubular member defining a passageway for fluid, with at least one injector socket defined by said tubular member, each of said at least one injector socket in fluid communication with said passageway, said tubular member configured for being fluidly connected to a fuel supply; forming a fuel rail damper including a hollow member disposed within said passageway, said hollow member having a first end and a second end, and at least one active portion, at least one of said first and second ends being open to atmospheric pressure, at least during assembly, thereby defining a chamber in conjunction with said at least one active portion.
- 11. The method of making a fuel rail of claim 10, further comprising: closing one of said first and second ends after assembly.
- 12. The method of making a fuel rail of claim 10, further comprising: closing both of said first and second ends after assembly.
- 13. The method of making a fuel rail of claim 10, further comprising: sealing one of said first and second ends in an air tight manner after assembly.
- 14. The method of making a fuel rail of claim 10, further comprising: sealing both of said first and second ends in an air tight manner after assembly.
- 15. A fuel rail comprising:a tubular member defining a passageway for fluid, at least one injector socket defined by said tubular member, each of said at least one injector socket in fluid communication with said passageway, said tubular member configured for being fluidly connected to a fuel supply; and a fuel rail damper including a hollow member disposed within said passageway, said hollow member having a first end and a second end, and at least one active portion, both of said first and second ends being open to the atmosphere, thereby defining a chamber in conjunction with said at least one active portion.
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
11351090 |
Dec 1999 |
JP |