1. Field
Example embodiments generally relate to fuel structures used in nuclear power plants and methods for using fuel structures.
2. Description of Related Art
Generally, nuclear power plants include a reactor core having fuel arranged therein to produce power by nuclear fission. The fuel elements may have a variety of configurations and/or characteristics, based on operating conditions of the specific nuclear power plant. For example, size, placement with respect to the core, placement relative to other fuel, enrichment, elemental fuel type, and shape of fuel all affect plant operating parameters. A common design in U.S. nuclear power plants is to arrange fuel in a plurality of cladded fuel rods bound together as a fuel assemblies placed within the reactor core.
As shown in
The fuel rods 18 and 19 are generally continuous from their base to terminal, which, in the case of the full length fuel rod 18, is from the lower tie plate 16 to the upper tie plate 14. Thus the cladding and fuel elements within the rod are also generally continuous through the length of the fuel rods 18 or 19.
As shown in
Example embodiments are directed to a fuel rod design using internal fuel element spacers, specifically, to specialized internal fuel element spacers placed at intervals within fuel rods and/or segments in order to manipulate operating characteristics of the rod and/or reduce problems associated with fretting of the fuel rod. Example embodiment fuel element spacers may be placed at varying intervals with rod height and/or clustered at rod ends in order to protect fretting regions at rod ends. Example embodiments may further include using fuel rod segments with internal spacing elements instead of single, continuous fuel rods. Example methods may include using fuel rods and/or segments having fuel element spacing elements by adjusting intervals of the spacing elements so as to affect the mechanical, neutronic, or thermal properties of the fuel rod segment.
Example embodiments will become more apparent by describing, in detail, example embodiments thereof with reference to the attached drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the example embodiments herein.
Detailed illustrative embodiments of example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. The example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only example embodiments set forth herein.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected,” “coupled,” “mated,” “attached,” or “fixed” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the language explicitly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Only one rod assembly 100 formed of example embodiment rod segments 110 is shown in
Example embodiment rod segments 110 may be attached between the upper and lower end pieces 120 and/or 130 and to each other so as to form an entire axial length of the rod assembly 100. Example embodiment rod segment 110a, example embodiment rod segment 110b, and one each of the upper and lower end pieces 120 and 130 may be connected directly or by adaptor subassemblies 300 at connections points along the axial length of the rod assembly 100. In the embodiment of
Example embodiment rod segments may be constructed of a material which is corrosion resistant and compatible with the other reactor components. For example, a zirconium alloy may be used in fabricating example embodiment rod segments. Example embodiment fuel rod segments having been described above, it will be appreciated that any reference to a “rod segment” or “fuel rod segment” invokes the above description, whereas a “fuel rod” or “rod” used alone refers to the continuous rods described in the background section.
As shown in detail in
The example rod segment 110 may contain one or more fuel elements 160 within the central housing 150. Each fuel element 160 may contain one or more nuclear fuels, such as uranium and/or plutonium, in an appropriate physical medium such as a ceramic oxide or the like. Fuel elements 160 may be formed into “pellets” as shown in
The example rod segment 110 also contains one or more internal spacing elements 180 within the central housing 150, coaxially placed with any fuel elements 160 within the housing 150. The internal spacing elements 180 rigidly constrain the fuel elements 160 to particular axial positions and/or spacing intervals within the example embodiment rod segment 110.
The internal spacing elements 180 may be placed at a variety of intervals within example rod segments 110. Placement of internal spacing elements 180 may affect neutronic and heat generation characteristics of example rod segments as discussed below, allowing greater power generation while maintaining heat generation limits.
For example, as shown in
As another example, in an operating nuclear core, a coolant may flow along the example rod 110 in
Internal spacing elements 180 placed at intervals shown in
Similarly, as shown in
Alternatively, internal spacing elements 180 may be placed at other intervals that affect neutronic and/or heat generation characteristics of example embodiment rod segments 110, and segments having different intervals may be combined to produce an overall more efficient core. For example, a rod segment 110 placed at an axial position within the core with an overly high neutron flux level may contain more internal spacing elements 180 to effectively reduce the fuel content and flux at that particular axial position. Other neutronic characteristics modified by spacer element placement may include, for example, hydrogen-to-uranium ratios and neutron absorption and scattering cross sections of example embodiment fuel rod segments. In this way, internal spacing elements 180 may provide a refined mechanism by which to affect neutron flux within a nuclear core containing example embodiment rod segments 110.
Internal spacing elements 180 may further improve mechanical characteristics of an example embodiment rod segment 110. As discussed above, spacers 20 placed near first and second mating structures 140a and 140b may fret segments 110. As shown in
Internal spacing elements 180 may be formed of a variety of materials and physical shapes in order to achieve the above-described functions. Internal spacing elements 180 are generally sized to fit within the housing 150 and are generally shaped to rigidly maintain spacing intervals between fuel elements 160. For example, spheres, cylinders, disks, pucks, annuluses, cubes, hexahedrons, and/or toroids may all be functional shapes of spacing elements 180 that achieve the spacing functions described above. Internal spacing elements 180 are generally rigid in a longitudinal axial direction so as to maintain constant spacing intervals between fuel elements 160. Internal spacing elements may “float” with the fuel elements 160, maintaining relative axial displacement among fuel elements, but allowing the internal spacing elements and fuel elements to move in relation to the housing and fuel rod segment.
As shown in
Internal spacing elements 180 may be fabricated from a variety of materials based on how they are to affect example embodiment fuel segments. For example, in the case where spacing elements are designed to decrease effective fuel concentration, spacers may be fabricated from a material having a thermal neutron absorption and/or scattering cross section lower than that of conventional nuclear fuel, for example, less than 5 barns. These example internal spacing elements 180 may be fabricated from zirconium or another rigid material having a low total neutron cross section, such as inconel. Alternatively, spacing elements may serve to absorb neutron flux, in which case internal spacing elements may be formed of a material having a higher thermal neutron absorption cross section, including, for example, boron.
Internal spacing elements 180 may further be made of a material that substantially meets the inner wall 23 of the housing 150. The material may be expandable or resistive in order to provide rigid axial spacing and confinement, so as to compartmentalize the housing 150 and prevent or reduce fission product migration. Such a material may be used in spacer elements that increase a fret length without fuel element release from example embodiment rod segments. Internal spacing elements 180 may also be fabricated from heat insulative or conductive materials in order to further affect heat generation properties of example embodiment rod segments.
Example embodiments and methods thus being described, it will be appreciated by one skilled in the art that example embodiments and example methods may be varied through routine experimentation and without further inventive activity. For example, while the disclosure has addressed internal spacing elements useable with a rod segment, internal spacing elements may be used in any rod, such as the single, continuous rods 18 and 19 of
Number | Name | Date | Kind |
---|---|---|---|
3220152 | Sturm | Nov 1965 | A |
3230152 | Kerze, Jr. | Jan 1966 | A |
3940318 | Arino et al. | Feb 1976 | A |
3998691 | Shikata et al. | Dec 1976 | A |
4196047 | Mitchem et al. | Apr 1980 | A |
4284472 | Pomares et al. | Aug 1981 | A |
4362691 | Lang et al. | Dec 1982 | A |
4462956 | Boiron et al. | Jul 1984 | A |
4475948 | Cawley et al. | Oct 1984 | A |
4493813 | Loriot et al. | Jan 1985 | A |
4532102 | Cawley | Jul 1985 | A |
4597936 | Kaae | Jul 1986 | A |
4617985 | Triggs et al. | Oct 1986 | A |
4636352 | Boyle | Jan 1987 | A |
4663111 | Kim et al. | May 1987 | A |
4678924 | Loriot et al. | Jul 1987 | A |
4729903 | McGovern et al. | Mar 1988 | A |
4782231 | Svoboda et al. | Nov 1988 | A |
4859431 | Ehrhardt | Aug 1989 | A |
5053186 | Vanderheyden et al. | Oct 1991 | A |
5145636 | Vanderhevden et al. | Sep 1992 | A |
5347550 | Tanabe et al. | Sep 1994 | A |
5355394 | Van Geel et al. | Oct 1994 | A |
5400375 | Suzuki et al. | Mar 1995 | A |
5513226 | Baxter et al. | Apr 1996 | A |
5596611 | Ball | Jan 1997 | A |
5615238 | Wiencek et al. | Mar 1997 | A |
5633900 | Hassal | May 1997 | A |
5682409 | Caine | Oct 1997 | A |
5758254 | Kawamura et al. | May 1998 | A |
5867546 | Hassal | Feb 1999 | A |
5871708 | Park et al. | Feb 1999 | A |
5910971 | Ponomarev-Stepnoy et al. | Jun 1999 | A |
6056929 | Hassal | May 2000 | A |
6160862 | Wiencek et al. | Dec 2000 | A |
6192095 | Sekine et al. | Feb 2001 | B1 |
6233299 | Wakabayashi | May 2001 | B1 |
6275557 | Nylund et al. | Aug 2001 | B2 |
6298108 | Farawila | Oct 2001 | B1 |
6456680 | Abalin et al. | Sep 2002 | B1 |
6678344 | O'Leary et al. | Jan 2004 | B2 |
6751280 | Mirzadeh et al. | Jun 2004 | B2 |
6804319 | Mirzadeh et al. | Oct 2004 | B1 |
6895064 | Ritter | May 2005 | B2 |
6896716 | Jones, Jr. | May 2005 | B1 |
7157061 | Meikrantz et al. | Jan 2007 | B2 |
7235216 | Kiselev et al. | Jun 2007 | B2 |
20020034275 | Abalin et al. | Mar 2002 | A1 |
20030012325 | Kernert et al. | Jan 2003 | A1 |
20030016775 | Jamriska, Sr. et al. | Jan 2003 | A1 |
20030103896 | Smith | Jun 2003 | A1 |
20030179844 | Filippone | Sep 2003 | A1 |
20040091421 | Aston et al. | May 2004 | A1 |
20040105520 | Carter | Jun 2004 | A1 |
20040196942 | Mirzadeh et al. | Oct 2004 | A1 |
20040196943 | Di Caprio | Oct 2004 | A1 |
20050105666 | Mirzadeh et al. | May 2005 | A1 |
20050118098 | Vincent et al. | Jun 2005 | A1 |
20060062342 | Gonzalez Lepera et al. | Mar 2006 | A1 |
20060126774 | Kim et al. | Jun 2006 | A1 |
20070133731 | Fawcett et al. | Jun 2007 | A1 |
20070133734 | Fawcett et al. | Jun 2007 | A1 |
20070297554 | Lavie et al. | Dec 2007 | A1 |
20080031811 | Ryu et al. | Feb 2008 | A1 |
20080076957 | Adelman | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1051452 | May 1991 | CN |
1 012 852 | Aug 2003 | EP |
1 667 165 | Jun 2006 | EP |
63-252292 | Oct 1988 | JP |
2-73191 | Mar 1990 | JP |
2000-512761 | Sep 2000 | JP |
2006162613 | Jun 2006 | JP |
48428 | Oct 2005 | RU |
WO 9749092 | Dec 1997 | WO |
WO 0039807 | Jul 2000 | WO |
Entry |
---|
Merriam-Webster's' Collegiate Dictionary, Tenth Edition, 1993, p. 736. |
Office Action for corresponding Chinese Application No. 200810179638.0 dated Mar. 28, 2012. |
Japanese Office Action dated Aug. 27, 2013 issued in corresponding Japanese Application No. 2008-292876, with English translation. |
Office Action for corresponding Japanese Application No. 2008146972 dated Apr. 26, 2012. |
Office Action for corresponding Taiwanese Application No. 097144351 dated Dec. 3, 2013. |
Number | Date | Country | |
---|---|---|---|
20090135987 A1 | May 2009 | US |