The present invention relates to a fuel rod support insert for a nuclear fuel assembly spacer grid comprising interlaced straps defining a lattice of cells for receiving fuel rods, the insert being adapted to be secured to the straps for extending in at least one cell, the insert extending along an axis intended to be parallel to that of a cell and comprising two axially spaced end portions for connecting the insert to the straps and at least one elongated blade-like spring extending axially between the end portions for supporting a fuel rod.
EP 0 750 318 describes a fuel rod spacer grid comprising two superimposed sets of interlaced straps defining a lattice of cells for receiving fuel rods and inserts of the above-mentioned type, comprising end portions connected to the straps and leaf springs extending between the end portions with being separated by intermediate gaps.
An aim of the invention is to provide an insert enabling to better support fuel rods, namely with limiting risks of fretting at the contact between the insert and the fuel rods. Another aim of the invention is to enhance the buckling resistance of the spacer grid and to decrease its pressure drop.
To this end, an insert of the above-mentioned type is provided, wherein the spring has a non-rectilinear cross-section in each plane perpendicular to the insert axis.
In other embodiments, the insert comprises one or several of the following features, taken in isolation or in any technical feasible combination:
The invention also relates to a spacer grid for a nuclear fuel assembly, comprising interlaced straps defining a lattice of cells for receiving fuel rods and support inserts provided at the intersections of the straps for supporting fuel rods extending through the cells as defined above.
In one embodiment, the connection walls of the insert are inserted in connection slots provided on lower edges of the interlaced straps.
In one embodiment, the insert is secured to the straps by spot-welds.
The invention further relates to a nuclear fuel assembly comprising a bundle of fuel rods and an armature for supporting the fuel rods, the armature comprising at least one spacer grid as defined above.
In one embodiment, the nuclear fuel assembly further comprises at least one intermediate mixing grid comprising interlaced straps provided with mixing vanes and defining a lattice of cells for receiving fuel rods and tubular inserts each provided around the intersection of two straps for preventing contact between the fuel rods extending through the cells and the mixing vanes. The inserts are for example secured to the straps by at least one spot weld.
The invention and its advantages will be better understood on reading the following description given solely by way of example and with reference to the appended drawings, in which:
The nuclear fuel assembly 2 of
The armature 6 comprises a lower nozzle 8, an upper nozzle 10, a plurality of guide thimbles 12 and a plurality of spacer grids 14.
The nozzles 8, 10 are spaced along the assembly axis L. The guide thimbles 12 extend parallel to assembly axis L and connect the lower nozzle 8 to the upper nozzle 10. Each guide thimble 12 opens upwards through the upper nozzle 10 for allowing insertion of a control rod into the guide thimble 12.
The spacer grids 14 are distributed along the guide thimbles 12 and may be secured to the guide thimbles 12 for instance by welding. Each spacer grid 14 extends transversely to the assembly axis L.
Optionally, as illustrated on
Each intermediate mixing grid 15 extends transversely to the assembly axis L and may be secured to the guide thimbles 12 for instance by welding. Each intermediate mixing grid 15 is provided to impart mixing movement to coolant flowing through the intermediate mixing grid 15 without supporting the fuel rods 4.
The fuel assembly 2 may comprise at least one span between two successive spacer grids 14 provided with at least one mixing grid 15 positioned in said at least one span and at least one span between two successive spacer grids 14 free of mixing grid 15.
The fuel assembly 2 may comprise at least one span between two successive spacer grids 14 provided with several mixing grids 15 positioned in the same said span, e.g. two mixing grids 15.
Each fuel rod 4 comprises a tubular cladding, pellets of nuclear fuel stacked inside the cladding and caps closing the ends of the cladding. Each fuel rod 4 extends parallel to assembly axis L through the spacer grids 14 and the intermediate mixing grids 15 if any, with being supported transversely and longitudinally relative to assembly axis L by the spacer grids 14.
In operation, the fuel assembly 2 is placed in the core of a nuclear reactor with the lower nozzle 8 resting on a bottom plate 16 of the core and the assembly axis L being substantially vertical. A coolant flows upwardly from an inlet of the bottom plate 16, between the fuel rods 4 and through the nozzles 8, 10, the spacer grids 14 and the intermediate mixing grids 15 as illustrated by arrow F on
In the fuel assembly 2 represented on
As illustrated on
At least some of the spacer grids 14 of the fuel assembly 2 comprise also features such as mixing vanes to homogenise the flow of water and reduce the differences in temperature between the different points on the claddings by causing a transverse redistribution of the coolant water.
Each cell 20 extends along an axis A perpendicular to the plane of the spacer grid 14 (plane of
Each insert 22 is of tubular shape and extends around the intersection 46 of two straps 18 and in the adjacent corners of cells 20 of a four cells square unit (2×2 cell unit). Each insert 22 is adapted to support four fuel rods 4 extending through the cells 20 of the 2×2 cell unit.
The inserts 22 of
As illustrated on
As illustrated on
The end portions 26 have closed cross-sections in a plane transverse to the insert axis B.
Each spring 28 is connected at its axial ends to the end portions 26 and extends like a bridge between the end portions 26.
As illustrated on
Each connection wall 30 is adapted to intersect a strap 18 at 90° allowing connection of the insert 22 to the strap. The connection walls 30 are flat and parallel to the insert axis B.
Each contact wall 32 is adapted to extend obliquely at 45° in a corner formed by two intersecting straps 18 and to contact a fuel rod 4 received in a cell 20 delimited between the said two intersecting straps 18. Each contact wall 32 is arched radially outwardly in the axial direction B of the insert 22. The intermediate portion of each contact wall 32 protrudes outwardly with respect to the end portions of said contact wall 32 as is apparent on
As illustrated on
Each spring 28 is formed in the insert 22 at the junction of a connection wall 30 and an adjacent contact wall 32 between one central slot 34 formed in the contact wall 32 and one lateral slot 36 formed in the connection wall 30.
The central slot 34 is axially longer than the lateral slots 36 (
Each spring 28 comprises a longitudinal contact wing 38 formed in a contact wall 32 and a longitudinal lateral wing 40 formed in an adjacent connection wall 30. The contact wing 38 and the lateral wing 40 extend over the whole length of the spring 28 along the insert axis B and are inclined one relative to the other in a plane perpendicular to the insert axis B (
Each spring 28 has a non-rectilinear cross-section in each plane perpendicular to insert axis B. In other words, the cross-section of each spring 28 taken in a plane perpendicular to insert axis B is non-rectilinear at each point of the spring 28 (
More specifically in each plane the cross-section is arched with the concavity oriented inwardly towards the insert axis B providing a convex outer contact surface of the contact wing 38 on the fuel rod 4. The outer surface of the contact wing 38 is the surface of the contact wing 38 oriented opposite the insert axis B.
Each contact wing 38 is arched lengthwise. The contact wing 38 describes an arch in the lengthwise direction of the spring 28. The contact wing 38 has a lengthwise concavity oriented inwardly towards the insert axis B. The middle section of the contact wing 38 is at greater distance from insert axis B than the end sections of the contact wing 38. The spring 28 thus has an apex 42 protruding from the cross-section of the end portions 26.
Optionally, each contact wing 38 is arched transversely (
Optionally, each contact wing 38 is also arched laterally towards the associated spring 28 of the pair of springs 28 in a front view of the contact wall 32 in a direction radial with respect to the insert axis B. The springs 28 of each pair are closer at their middle than at their axial ends. The width of the central slot 34 decreases from the axial end towards the middle of the central slot 34.
Each contact wing 38 is of substantially constant width along the length of the spring 28.
Each lateral wing 40 is flat and extends laterally from the corresponding contact wing 38 in the plane of the corresponding connection wall 30.
The width of the connection walls 30 increases from the end portions 26 towards the middle of the insert 22, while the width of the contact walls 32 correspondingly decreases (see
In the illustrated embodiment, each lateral slot 36 has a width decreasing from the end of the lateral slot 36 towards the center of the lateral slot 36. Each lateral slot has a smaller width in the center thereof. The free longitudinal edge of each lateral wing 40 (along the lateral slot 36) is curvilinear and curved away from the junction zone 44 between the lateral wing 40 and the contact wing 38. The junction zone 44 is also curved away from the free edge due to the curvatures of the contact wing 38.
Each lateral wing 40 has a width varying along the length of the spring 28. Each lateral wing 40 is larger at the center than at the ends.
As illustrated on
The insert axis B of the insert 22 secured around an intersection coincides with the intersection 46.
Each connection slot 48 extends upwardly from a lower edge 50 on a portion of the height of the strap 18.
The upper edge of each connection wall 30 of the insert 22 is provided with a notch 52 for fitting with the closed extremity of a connection slot 48 of a strap 18. The lower edge of each connection wall 30 of the insert 22 is axially secured to the corresponding straps 18 by mechanical means or preferably by a spot weld 23.
In a preferred embodiment, the lower edge of each connection wall 30 also has a notch 52. The insert 22 is in this way symmetrical about a plan which extends perpendicularly to the insert axis B and at mid-height of said insert 22. Each insert 22 can be loaded on the straps 18 by either end. The assembling of the insert 22 is thus easy, without any risk of inversion.
The use of the insert 22 leads to a very simple shape of the straps 18, flat in their interlaced part and very easy to assemble. In addition, the insert 22 being inserted from the lower edge 50 into the spacer grid 14, there is no risk of interference between the mixing devices possibly carried by the upper edge 70 of the straps 18 and the insert 22 during the spacer grid assembling. The mixing device may be designed without restriction due to the fuel rod support design.
After mounting, the lower edge of the insert 22 lies substantially in the plan defined by the lower edges 50 of the straps 18 of the spacer grid 14 in a preferred embodiment. In another embodiment, the insert 22 is also adjacent to the upper edge 70 of the spacer grid 14.
In use, as illustrated on
The springs 28 bias the fuel rods 4 transversely to the cell axis A to support the fuel rod 4 transversely and longitudinally by friction relative to the spacer grid 14.
The springs 28 exhibit a 3D-shape that provides satisfactory support with reduced fretting risks.
The widthwise curved elongated springs 28 allow providing sufficient flexion stiffness for obtaining a linear contact between the fuel rod 4 and each spring 28 over a length sufficient for limiting local contact strain. The contact between the springs 28 of each pair of springs 28 and the fuel rod 4 must be sufficiently strong while avoiding fretting, namely when the fuel rod 4 vibrates in use due to the fluid flow of high velocity.
The lateral wing 40 inclined relative to the contact wing 38 imparts flexion stiffness to the spring 28. The flexion stiffness of the spring 28 and the deformation of the spring 28 under load namely depend upon the inclination between the wings 38, 40, and upon the width of the lateral wing 40 along the spring 28.
The lengthwise arched contact wing 38 ensures that the fuel rod 4 contacts the apex 42 of the contact wing 38 with a longitudinal linear contact increasing in length with the biasing force exerted by the spring 28 on the fuel rod 4 for distributing the force on a longer length and thus limiting local contact strain and fretting.
The converging laterally arched contact wings 38 of the springs 28 of each pair of springs 28 also ensures that a fuel rod 4 will contact the contact wings 38 in the region of their apexes 42.
The convex outer contact surface of the contact wing 38 allows contacting the fuel rod 4 with limited fretting risks.
The insert 22 of
The tubular end portions 26 of closed cross section allow rigidly securing the insert 22 to avoid dispersion of the efforts of the springs 28 and thereby ensure a good contact between the springs 28 and the fuel rod 4.
The insert 22 is obtainable e.g. by punching a tube or by rolling a metal sheet. In the preferred embodiment illustrated on
The insert 22 has a compact design and is easy to manipulate since it has no or few asperities. This eases manufacturing and handling the insert 22.
The guide thimble 12 is in contact and secured (e.g. by welding) to the straps 18 delimiting the cell 20 receiving the guide thimble 12 and does not need to be supported by inserts 22.
Correspondingly, the insert 22 disposed at the intersecting straps 18 delimiting the cell 20 receiving the guide thimble 12 has an open cross-section extending on 270° around the insert axis B corresponding to three quarters of the insert 22 illustrated on
An insert 22 of opened cross-section extending on 180° around the insert axis B and corresponding to half the insert 22 illustrated on
An insert 22 of opened cross-section extending on 90° around the insert axis B and corresponding to a quarter of the insert illustrated on
In an alternative embodiment, the external corner of each corner cell 20 of the spacer grid 14 is truncated and a wall inclined at about 45° relative to the peripheral straps 18 joins the adjacent peripheral straps 18 of the spacer grid 14. The fuel rod 4 located in the corner cell 20 is supported by a double dimple having a position and a shape similar to that of the pairs of springs 28 of an insert 22 and by three different inserts 22 each arranged in one of the other corners of the corner cell 20 receiving the fuel rod 4.
The inserts of opened cross-section (over 90°, 180° or 270°) enable to obtain a satisfactory support due to the inclined walls and to the curved springs formed at the junction between the walls. Once secured to the straps, the insert is strengthen and defines a tubular structure with the straps it is secured to.
To further optimize the contact area between the insert 22 and the fuel rod 4 and the vibratory behaviour of the fuel rod 4 under coolant flow during operation of the fuel assembly 2 in the nuclear reactor core, the size and the shape of the lateral slots 36 may be adapted.
The insert 22 illustrated on
The insert 22 illustrated on
Each insert 22 connects two interlaced straps 18 at a distance from the intersection 46 between the straps 18. The insert 22 reinforces the connection between the two straps 18.
Tests performed showed that a spacer grid 14 comprising inserts 22 spot-welded to the straps 18 has a superior mechanical strength and enhanced robustness regarding both fuel rod fretting and spacer grid buckling. The inserts 22 act as tighteners and increase the stability of the spacer grid 14 in case of lateral impact due for instance to seism or to Loss of Coolant Accident. Accordingly it is possible to further optimize the design of the strap 18 to convert this increased buckling resistance into thermal-hydraulic and neutronic performances.
One strap 18 has a first interlocking slit 64 provided in a lower edge 50 and the other strap 18 has a corresponding second interlocking slit 68 provided in an upper edge 70. Each strap 18 has a pair of connection slots 48 on either side of the interlocking slits 64, 68 for receiving an insert.
Each strap 18 has intersection sections 72 each located between two adjacent connection slots 48 for receiving an insert alternating with intermediate sections 74 each located between to adjacent connection slots 48 for receiving two distinct inserts.
As illustrated on
As illustrated on
Upon interfitting the interlocking slits 64, 68, the lower cutouts 76 define a lower flow passage between the cells surrounding the intersection 46. In the same manner, the intermediate cutouts 78 define an intermediate flow passage between the cells around the intersection 46 of the straps 18.
In the embodiment of
In one embodiment, the intersection section 72 ends before the insert 22 and does not penetrate into it.
These embodiments provide the advantage of limiting pressure drop and balancing pressure in the adjacent cells 20 separated by the straps 18. Limitation of pressure drop imparted by the strap 18 themselves allows both optimizing the shape and size of mixing vanes of the spacer grids 14 and of the intermediate mixing grids 15 optionally located between two adjacent spacer grids 14.
Preferably the design of the intermediate mixing grids 15 is consistent with the design of the spacer grid 14.
In the fuel assembly 2 represented on
As illustrated on
The intermediate mixing grid 15 is connected to the guide thimbles 12 extending through the intermediate mixing grid 15, e.g. by welding. The straps 80 are provided on their upper edges with mixing vanes 86 preferably formed integrally with the straps 80 and having preferably the same shape as the vanes of the spacer grid 14.
The intermediate mixing grid 15 comprises tubular inserts 84 each surrounding the intersection of two straps 80. The insert 84 is axially secured to the corresponding straps 80 by mechanical means or preferably by a spot weld 85 at least one and preferably at each intersection of its lower end with said straps 80.
As illustrated on
As illustrated on
The intermediate mixing grid 15 has a peripheral strap surrounding the inner interlacing straps 80 or is deprived of peripheral strap, in which case the peripheral cells 82 are opened outwardly.
As visible on
The straps 80 of an intermediate mixing grid 15 have a short height as compared to the straps 18 of a spacer grid 14.
The height of a spacer grid 14, that is the height of the straps 18 taken between the lower edge 50 and the upper edge 70, is for example comprised between 30 mm and 45 mm.
An intermediate mixing grid 15 has for example a height of 15 mm. An insert 84 has for example a height of 6 mm. A cutout 92 has for example a height of 5 mm.
The use of the insert 84 leads to a very simple shape of the straps 80, flat in their interlaced part and very easy to assemble. In addition, the insert 84 being inserted from the lower edge into the intermediate mixing grid 15, there is no risk of interference between the mixing devices carried by the upper edge of the straps 80 and the insert 84 during the intermediate mixing grid assembling. The mixing device may be designed without restriction due to the geometry of the straps 80.
Having similar features for the spacer grids 14 and the intermediate mixing grids 15 provides the different grids 14, 15 of the fuel assembly 2 with homogeneous characteristics in terms of hydraulic flow, pressure loss and mechanical behaviour.
The invention is not limited to the described embodiments.
Hence, the described embodiments relate to a fuel assembly having a bundle of fuel rods arranged at the nodes of the square lattice. The fuel rods cells have a square outline. The invention also applies to other type of lattices, namely to hexagonal lattices such as the fuel assembly of the VVER type.
In the spacer grids and intermediate mixing grids, the straps and the inserts are preferably made of zirconium alloy. In an alternative embodiment the inserts are made of Ni-based alloy or of another material with high mechanical characteristics such as for instance Ph13.8 Mo.
In a general manner, at least one fuel assembly mixing or spacer grid comprises tubular inserts each surrounding one respective intersection of interlaced straps forming the grid.
Preferably, each mixing or spacer grid comprises tubular inserts each surrounding one respective intersection of interlaced straps forming the grid. In an alternative embodiment, at least one grid may be deprived of such inserts.
Preferably, each grid has straps and inserts in zirconium alloy. In an alternative embodiment, at least one grid may comprise insert which are not made of zirconium alloy.
Preferably each intermediate mixing or spacer grid, located between the lowermost grid and the uppermost grid of the fuel assembly, has mixing vanes. In an alternative embodiment, at least one intermediate grid is free of mixing vanes.
Preferably the uppermost grid and/or the lowermost grid of the fuel assembly is free of mixing vanes.
In one embodiment, the lowermost grid is of a different design and the uppermost grid is similar in conception to the lowermost grid or is similar in conception to the intermediate spacer grids.
Number | Date | Country | Kind |
---|---|---|---|
12306515 | Dec 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/075025 | 11/28/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/086661 | 6/12/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3298922 | Prince | Jan 1967 | A |
4190494 | Olsson | Feb 1980 | A |
4314884 | Fanning et al. | Feb 1982 | A |
4772447 | Manson et al. | Sep 1988 | A |
5183629 | Canat et al. | Feb 1993 | A |
7792236 | Rozhkov | Sep 2010 | B2 |
20090257546 | Lu | Oct 2009 | A1 |
20110200160 | Evans et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
0 750 318 | Dec 1996 | EP |
S59-116577 | Jul 1984 | JP |
A05-323074 | Dec 1993 | JP |
A06-059090 | Mar 1994 | JP |
A2001-504935 | Apr 2001 | JP |
A2011-169899 | Sep 2011 | JP |
Entry |
---|
Search Report for corresponding International Application PCT/EP2013/075025. |
Number | Date | Country | |
---|---|---|---|
20150287481 A1 | Oct 2015 | US |