Claims
- 1. In a fuel supply and ignition control system including a pilot valve operable to supply fuel to a pilot outlet for ignition; spark generating means including spark electrode means located in the proximity of the pilot outlet defining a spark gap, and means for actuating said spark electrode means to generate sparks for igniting the pilot fuel to provide a pilot flame which bridges the spark gap; and a main valve operable to supply fuel to a main burner for ignition by the pilot flame; a control circuit comprising: activate means for effecting energization of said pilot valve; a flame sensing network connected to said spark electrode means and operable to provide a flame signal whenever a flame bridges the spark gap; bistable switching means for controlling the operation of said main valve; enabling means interposed between said switching means and said flame sensing network for operating said switching means between a first state in which said switching means prevents operation of said main valve and a second state in which said switching means effects operation of said main valve, said enabling means including a controllable switching device having first and and second control inputs and an output connected to said switching means, control circuit means for providing a control potential at said first control input of said controllable switching device, and reference circuit means for providing a reference potential at said second control input of said controllable switching device, the one of said circuit means which is connected to one of said control inputs including a capacitor and charge control circuit means coupled to said flame sensing network and operable in the absense of said flame signal to enable said capacitor to charge and periodically discharge over a circuit path to limit the potential at said one control input to a given value which provides a first difference between the control and reference potentials, and said charge control circuit means being responsive to said flame signal to permit said capacitor to charge while preventing said capacitor from discharging over said circuit path whereby the potential provided at said one control input is at a value greater than said given value thereby providing a second difference between the control and reference potentials, said controllable switching device being enabled to conduct thereby connecting said control circuit means to said switching means to extend said control potential thereto as an enabling signal when one of said first and second differences is provided between said control and reference potentials, and said controllable switching device being maintained non-conducting in the absence of said one difference between said control and reference potentials thereby isolating said control circuit means from said switching means.
- 2. A system as set forth in claim 1 wherein said enabling means is energized continuously and independently of said activate means.
- 3. A system as set forth in claim 1 wherein said control circuit is energized with an alternating current, said charge control means permitting said capacitor to be charged and discharged during alternate half cycles of the alternating current in the absence of said flame signal, and said charge control means responding to said flame signal to permit said capacitor to charge during a plurality of successive cycles of the alternating current and to prevent said capacitor from discharging during said plurality of cycles, said controllable switching device being maintained non-conducting at least until said capacitor is permitted to charge for a time greater than one cycle of the alternating current.
- 4. A system as set forth in claim 1 wherein said flame sensing network comprises a capacitor and circuit means including resistance means connecting said capacitor in a charging circuit path with said spark electrode means between a source of potential to permit said capacitor to be charged to provide said flame signal when a flame bridges the spark gap.
- 5. A system as set forth in claim 4 wherein said spark electrode means comprises first and second spark electrodes, and wherein capacitor and said resistance means are connected in series with an output winding of said spark generating means, forming a portion of said charging circuit path, said first spark electrode being connected to a terminal of said output winding and said second spark electrode being disposed in a spaced relationship with said first spark electrode, defining said spark gap and being connected to a point of reference potential for said control circuit whereby when a flame bridges the spark gap, said portion of said charging circuit path is effectively coupled to said point of reference potential.
- 6. A system as set forth in claim 5 which further comprises capacitance means connected in shunt with said output winding and said first and second spark electrodes, said spark generating means being operable when energized to generate high voltage pulses which are applied to said first and second spark electrodes by way of said output winding and said capacitance means.
- 7. A system as set forth in claim 1 wherein said activate means includes second switching means connected in a circuit path including first normally closed contacts of said first-mentioned switching means, and switch means operable to connect power to said circuit path for energizing said second switching means, said second switching means being operable when energized to close second contacts to provide a shunt path around said first contacts whereby at least said second switching means is maintained enerigized over said second contacts when said first switching means operates causing said first contacts to open.
- 8. In a fuel supply and ignition system including a pilot valve operable to supply fuel to a pilot outlet for ignition; spark generating means including electrode means located in the proximity of the pilot outlet defining a spark gap, and means for activating the electrodes to generate sparks for igniting the pilot fuel to provide a pilot flame which bridges the spark gap; and a main valve operable to supply fuel to a main burner for ignition by the pilot flame; a control circuit comprising: activate means for energizing said pilot valve; first switching means operable when enabled to energize said main valve; second switching means having first and second control inputs and an output coupled to said first switching means; first circuit means for providing a reference signal at said first control input of said second switching means for preventing the enabling of said second switching means in the absence of a pilot flame; second circuit means including a capacitor which provides a signal at said second control input of said second switching means; a flame sensing network connected in circuit with said spark electrode means for providing a flame signal whenever a pilot flame bridges the spark gap; and a charge control circuit means including a controllable switching device for controlling the charging of the capacitor, said controllable switching device being operable in the absence of said flame signal to limit the charging of said capacitor whereby said second switching means is maintained disabled in the absence of a flame, and said controllable switching device being responsive to said flame signal to permit said capacitor to charge to a value which provides a signal at said second control input which enables said second switching means to provide a signal at its output which enables said first switching means.
- 9. A system as set forth in claim 8 wherein said second switching means comprises a further controllable switching device which is enabled whenever the potential at said second control input exceeds the potential at said first control input by a given amount, said further controllable switching device when enabled providing a discharge path for said capacitor to thereby generate a signal for enabling said first switching means.
- 10. In a fuel supply and ignition system including a pilot valve actuated by a pilot valve solenoid to supply fuel to a pilot outlet for ignition; spark generating means including spark electrode means located in the proximity of the pilot outlet defining a spark gap, and means for activating said spark electrode means to generate sparks for igniting the pilot fuel to provide a pilot flame which bridges the spark gap; and a main valve actuated by a main valve solenoid to supply fuel to a main burner for ignition by the pilot flame; a control circuit comprising: enabling means operable in the absence of a flame at said pilot outlet to generate enabling signals; switching means for controlling the energization of said pilot and main valve solenoids; activate means for enabling said switching means to respond to said enabling signals to operate and provide an energizing path for said pilot valve solenoid to operate said pilot valve; a flame sensing network connected in circuit with said spark electrode means for providing an inhibit signal when a flame bridges the spark gap, and means for coupling said inhibit signal to said enabling means to inhibit the generation of further enabling signals, causing said switching means to be disabled, and said energizing path for said pilot valve solenoid being interrupted when said switching means is disabled, permitting said main valve solenoid to actuate said main valve, said pilot valve solenoid being maintained energized over a holding circuit path including said main valve solenoid after said switching means is disabled.
- 11. A system as set forth in claim 10 wherein said flame sensing network comprises a capacitor, and circuit means connecting said capacitor in a charging circuit path with said spark electrode means to permit said capacitor to be charged to provide said inhibit signal whenever a flame bridges the spark gap.
- 12. A system as set forth in claim 11 wherein said enabling means comprises a controllable switching device having first and second control inputs and an output connected to a control input of said switching means, control circuit means connected to said first control input for providing an enabling signal at said first control input, reference circuit means connected to said second control input for providing a reference signal at said second control input, said switching device being enabled for a predetermined difference between said enabling and reference signals, said inhibit signal controlling said reference circuit means to prevent enabling of said switching device thereby terminating the generation of enabling signals for said switching means.
- 13. A system as set forth in clain 10 further comprising circuit means connecting an operate winding of said pilot valve solenoid and an operate winding of said main valve solenoid in a series circuit path, said activate means being operable to connect power to said series circuit path; said main valve winding limiting the current flow through said series circuit path to a level which is insufficient to actuate the pilot valve, said switching means, when operated, providing a shunt circuit path around said main valve winding permitting current at an operating level to flow through said pilot valve winding to actuate said pilot valve and said shunt circuit path being interrupted when said switching means is thereafter disabled, causing said main valve winding to be energized to actuate said main valve, said pilot valve winding being maintained energized over said series circuit path, including said main valve winding when said switching means is disabled.
RELATED APPLICATIONS
This is a continuation-in-part application of co-pending applications Ser. No. 790,408, filed Apr. 25, 1977 now U.S. Pat. No. 4,178,149, issued Dec. 11, 1979 and Ser. No. 966,009, filed Dec. 4, 1978 now U.S. Pat. No. 4,269,589 issued May 26, 1981. As to common subject matter, applicant claims the benefit fo the priority of said applications under 35USC 120.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
966009 |
Dec 1978 |
|