This application claims priority to Korean Application No. 10-2015-0088543, filed Jun. 22, 2015, the contents of which are incorporated herein in their entirety.
The present disclosure relates to a fuel supply nozzle, and more particularly, to a fuel supply nozzle unit, of which a threadedly engaging structure is provided on a plurality of nozzles itself which are provided on a rear end of a combustor of a gas turbine, thereby quickly and easily installing the nozzles and substantially sealing the nozzles.
In general, a turbine generator widely used for a gas turbine power plant drives a turbine by use of a combustion gas produced by burning a fuel with a compressed air.
A combustor for burning the fuel is generally provided with a plurality of nozzles, and the plurality of nozzles are fed with the fuel from a fuel storage, and then eject the fuel of high pressure into the combustor.
In order to fix the nozzles to a rear end of the combustor, according to the conventional method, a rear end of the respective nozzles is additionally provided with a fastening structure capable of connecting the respective nozzles to the rear end of the combustor. (see US Patent Application Publication No. 2014/0241858)
The method has some drawbacks in that additional configuration is required to fix the respective nozzles to the rear end, and thus additional process and costs for manufacturing the fastening structure are needed.
Therefore, the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a fuel supply nozzle unit capable of quickly and easily connecting at least one nozzle to a rear end of a combustor, as well as having a sufficient sealing effect.
In order to achieve the above object, there is provided a fuel supply nozzle unit including a fuel supply nozzle having a front end which is provided with a plurality of fuel supply holes, a rear end which extends from the front end, and is formed with a threaded portion on its outer surface, and an end plate which is connected to the rear end, and is formed with a plurality of threaded holes; a fuel supply nozzle case which is provided with a plurality of fuel supply nozzle mounting holes, the respective fuel supply nozzle mounting holes being formed with a threaded surface which is threadedly engaged with the threaded portion; and a washer which is placed on an interface between the end plate and the fuel supply nozzle case, and is provided with a plurality of washer holes corresponding to the plurality of screw holes formed in the end plate.
The washer includes at least one protrusion on an outer peripheral surface thereof.
The fuel supply nozzle unit may further includes a plurality of sealing members which are provided on an interface between an outer surface of the rear end and an inner surface of the plurality of fuel supply nozzle mounting holes formed on the fuel supply nozzle case.
The plurality of sealing members may be a metal spring for forming at least one contact surface.
An inlet of the respective fuel supply nozzle mounting holes and the rear end of the fuel supply nozzle may be provided with a stepped portion.
A metal spring for forming at least one contact surface may be provided on a bottom surface of the stepped portion which is formed at the inlet of the respective fuel supply nozzle mounting holes.
With the above configuration of the fuel supply nozzle unit according to the present disclosure, since the nozzle itself includes a threadedly fastening structure, it is possible to quickly assemble and disassemble the nozzle, without installing additional components. Therefore, as well as quickly carrying out engagement and disengagement of the nozzle, it is possible to reduce a production time and cost of the nozzle components.
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In describing the embodiments of the present disclosure, the same reference numerals are used throughout the drawings to refer to the same elements, and redundant description thereof will omitted if necessary.
In addition, the expressions that mean ordinal numbers in the specification, such as “first,” “second,” “A,” “B,” “(a),” “(b),” and the like, are used for describing various constituent elements without imposing any limitation to the various constituent elements. The expressions that mean the ordinal numbers are used only for distinguishing among the constituent elements of the same kind. when one element is described as being “connected” or “coupled” to the other element, it should be understood that one element may be directly connected or coupled to the other element, but a third element may be interposed between the two elements. In contrast, when one element is described as being “directly connected” or “directly coupled” to the other element, it should be understood that a third element is not interposed between the two elements.
The fuel supply nozzle 11 of the present disclosure includes a front end 110 which is provided with the plurality of fuel supply holes 113, a rear end 111 which extends from the front end 110, and is formed with a threaded portion 114 on its outer surface, and an end plate 112 which is connected to the rear end 111, and is formed with a plurality of screw holes 115.
Meanwhile, a fuel supply nozzle case 12 is provided with a plurality of fuel supply nozzle mounting holes 120, and the respective fuel supply nozzle mounting holes 120 is formed with a threaded surface 121 which is threadedly engaged with the threaded portion 114. The fuel supply nozzles 11 are assembled to the fuel supply nozzle case 12 to form a fuel supply nozzle unit 10.
Specifically, the fuel supply nozzle 11 consists of the front end 110 having a conical spray member and the plurality of fuel supply holes 113, and the rear end 111 having a coupling portion which is connected to a rear end of a combustor.
The fuel supply nozzle 11 is fed with a fuel from a fuel storage, and ejects a fuel/air mixture of high pressure into the combustor through the plurality of fuel supply holes 113.
The rear end of the combustor is provided with the plurality of fuel supply nozzle mounting holes 120, and the respective fuel supply nozzle mounting holes 120 has the threaded surface 121 formed on the inner peripheral surface thereof. The front end 110 of the respective fuel supply nozzles 11 is inserted from the rear end of the combustor, and then is threadedly engaged to the threaded surface 121 formed on the fuel supply nozzle mounting hole 120.
More specifically, the conical front end 110 of the fuel supply nozzle 11 is first inserted into the fuel supply nozzle case 12, and then the threaded portion 114 formed on the rear end 111 of the fuel supply nozzle is directly engaged to the fuel supply case 12. Accordingly, it is possible to quickly and firmly engage the components by the engagement of the threaded portion 114.
The fuel supply nozzle unit 10 may be provided with a plurality of sealing members 13 which are provided on an interface between the outer surface of the rear end 111 of the fuel supply nozzle and the inner surface of the plurality of fuel supply nozzle mounting holes 120 formed on the fuel supply nozzle case 12.
The sealing member of the donut shape may have a rectangular cross section, and this shape can provide the optimum sealing effect. However, the present disclosure is not limited to the rectangular cross section of the donut-shaped sealing member.
The plurality of sealing members 13 may include a metal spring 130 having at least one contact surface. Specifically, the sealing member 13 may be provided by the M-shaped metal spring 130 having two contact surfaces, as illustrated in
The position of the plurality of metal springs 130 is not limited to the location illustrated in
As illustrated in the drawings, the fuel supply nozzle 11 includes the end plate 112 connected to the rear end 111, and the end plate 112 provided at the distal end of the fuel supply nozzle 11 is formed to have a width larger than an inner diameter of the mounting hole 120.
The end plate 112 is configured to more firmly connect the fuel supply nozzle, as well as fixing the fuel supply nozzle by the screw structure. The end plate 112 is provided with a plurality of screw holes 115, so that the fuel supply nozzle can be fixed by additional screw engagement using the screw holes 115. The present disclosure is not limited to the number of screw engagement illustrated in
Preferably, a finish gasket ring 14 may be provided on the interface between the end plate 112 and the fuel supply nozzle case 12 to further improve the sealing effect, and the finish gasket ring 14 is provided with a plurality of holes 140 corresponding to the plurality of screw holes 115 which are formed in the end plate 112 of the fuel supply nozzle 11.
The finish gasket ring 14 is provided with the plurality of holes 140 corresponding to the position and number of the screw holes 115, and is interposed between the rear end of the fuel supply nozzle case 12 and the end plate 112 of the fuel supply nozzle 11 to firmly install and seal the fuel supply nozzle 11.
Meanwhile, a washer 15 provided with a plurality of washer holes 150 corresponding to the plurality of screw holes 115 formed in the end plate 112 of the fuel supply nozzle 11 may be interposed between the end plate 112 and the fuel supply nozzle case 12.
The end plate and the washer 15 are not limited to a specific shape. If the contact area of the end plate 112 is not sufficient, the washer 15 is interposed between the end plate 112 and the fuel supply nozzle case 12 to increase a frictional force upon engagement and thus firmly fix the end plate.
In the case where the end plate 112 is provided with the screw holes 115, the washer 15 is provided with washer holes corresponding to the screw holes 115, similar to the finish gasket ring 14.
In addition, the washer 15 is characterized by having at least one protrusion 151. The protrusion 151 is bent to enclose the end plate 112, so as to prevent the end plate 112 from inadvertently rotating due to vibration or the like produced when the combustor operates which causes the fuel supply nozzle from to be unfastened. Therefore, the protrusion 151 more firmly fixes the end plate. Preferably, the side of the washer 15 is provided with at least one protrusion 151.
The protrusion 151 should have a length and wide enough to enclose the end plate 112 by bending the protrusion from the side of the washer 15 so as to fix the end plate 112.
In particular, the washer 15 can be used even if the end plate 112 is not provided with the screw hole 115. In this instance, the protrusion 151 has an excellent effect of preventing the rotation of the end plate 112.
The stepped portion 122 is configured to improve the sealing effect and the fixing force, and the plurality of sealing members 13 are provided to the longitudinal side of the stepped portion 122. The annular metal spring 130 is inserted at the bottom surface of the stepped portion 122 as the sealing member.
Specifically, in addition to the sealing effect provided by the structure itself of the stepped portion 122, since the sealing members 13 and 130 are added by use of the lateral surface and the bottom surface of the stepped portion 122, the fuel supply nozzle unit 10 having the stepped portion 122 has the superior sealing effect and the fixing force, as compared to the configuration of the screw fastening only.
The embodiments discussed have been presented by way of example only and not limitation. Thus, the breadth and scope of the invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. Moreover, the above advantages and features are provided in described embodiments, but shall not limit the application of the claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Brief Summary” to be considered as a characterization of the invention(s) set forth in the claims found herein. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty claimed in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims associated with this disclosure, and the claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of the claims shall be considered on their own merits in light of the specification, but should not be constrained by the headings set forth herein.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0088543 | Jun 2015 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
2804917 | Smith | Sep 1957 | A |
2965303 | Jackson | Dec 1960 | A |
4712370 | MacGee | Dec 1987 | A |
5228283 | Sciocchetti | Jul 1993 | A |
5873237 | Medla et al. | Feb 1999 | A |
6378787 | Alstom | Apr 2002 | B1 |
6705087 | Ohri | Mar 2004 | B1 |
8505311 | DesChamps | Aug 2013 | B2 |
20050005610 | Belsom et al. | Jan 2005 | A1 |
20060026966 | Moraes | Feb 2006 | A1 |
20070033940 | Duverneuil | Feb 2007 | A1 |
20110005230 | Bailey et al. | Jan 2011 | A1 |
20110083442 | Khan et al. | Apr 2011 | A1 |
20110203283 | Bottcher et al. | Aug 2011 | A1 |
20120183911 | Belsom | Jul 2012 | A1 |
20130174558 | Stryapunin | Jul 2013 | A1 |
20130294864 | Bhat et al. | Nov 2013 | A1 |
20140026578 | Kato et al. | Jan 2014 | A1 |
20140241858 | Tashiro et al. | Aug 2014 | A1 |
20140338339 | Westmoreland et al. | Nov 2014 | A1 |
20150000283 | Ramier | Jan 2015 | A1 |
20150089954 | Widenhorn et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
S48-25444 | Jul 1973 | JP |
4-227410 | Aug 1992 | JP |
H04227410 | Aug 1992 | JP |
H10205757 | Aug 1998 | JP |
H11159757 | Jun 1999 | JP |
2010-216668 | Sep 2010 | JP |
20-1999-028389 | Jul 1999 | KR |
Entry |
---|
JP 4-227410 Michael Bruce English Translation (Year: 1992). |
Extended Search Report issued in corresponding European Application No. 16175293.6, dated Oct. 20, 2016, 8 pages. |
International Search Report issued in corresponding Application No. PCT/KR2016/006598, dated Sep. 28, 2016 5 pages. |
Korean Office Action issued by the Korean Intellectual Property Office dated Aug. 3, 2017 in connection with Korean Patent application No. 10-2015-0088543. |
A Japanese Office Action dated Nov. 27, 2018 in connection with Japanese Patent Application No. 2017-565899 which corresponds to the above-referenced U.S. application. |
Number | Date | Country | |
---|---|---|---|
20160369760 A1 | Dec 2016 | US |