This application claims priority of Korean Application No. 10-2003-0073902, filed Oct. 22, 2003, the disclosure of which is incorporated fully herein by reference.
The present invention relates to a nozzle used for a fuel supply system of a vehicle and a fuel return valve employing the nozzle. More specifically, the nozzle reduces noise generated while returning fuel is falling and the noise occurs while bubbles contained in the returning fuel are broken within the cylinder of the Liquefied Petroleum Injection Engine.
Typically, in a Liquefied Petroleum Injection Engine, the liquefied petroleum is injected into the engine by an injector. Any fuel that is remaining following injection is returned to the fuel cylinder through a return line. The liquefied petroleum has the property of easily evaporating, therefore, a large number of bubbles are easily formed in the fuel returned to the cylinder.
The bubbles cause noise generation when they break in the cylinder and, furthermore, when the returning fuel is falling if the nozzle of the fuel return valve is not immerged in the fuel inside the cylinder. Therefore, it would be advantageous to reduce the noise generated by the bubbles in the fuel.
According to a preferred embodiment noise generated by fuel returning into a cylinder is reduced by providing a nozzle for a fuel supply system of a vehicle and a fuel return valve employing the nozzle. The noise is generated from bubbles in the fuel breaking as the fuel returns to the cylinder.
In a preferred embodiment, the nozzle for the fuel supply system is composed of a nozzle body formed with a plurality of penetration holes of which the sectional area is about 40% or less of the flow sectional area of the returning fuel. A guide section is integrated into the nozzle body to change the proceeding direction of the fuel discharged from the penetration holes.
According to another embodiment, the fuel supply system includes a return nipple integrated into the valve body to receive a supply of returning fuel. The nozzle body is preferably formed with penetration holes of which the sectional area is 40% or less when compared to the flow sectional area of the fuel returning through the return nipple. The nozzle is preferably equipped with a guide section integrated into the nozzle body to change the proceeding direction of the fuel discharged from the penetration holes. The valve spool is installed in such a way that allows for straight line sliding or movement possible within the valve body.
In a preferred embodiment, a spring is installed to apply an elastic force to the valve spool, such as to allow only flow of the fuel streaming to the nozzle from the return nipple. Furthermore, a plunger delivers an elastic force of the spring to the valve spool and guides the straight line sliding motion of the valve spool.
For a better understanding of the nature and objects of the invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which:
Referring to
According to the embodiment shown in the Figures, the penetration holes 3 are placed in parallel with each other in the length direction thereof. The guide section 7 is located in the center of the penetration holes 3 and the guide section 7 is provided with a slope 9. The slope 9 slants to the straight line proceeding direction of the fuel discharged through the penetration holes 3. In other words, the slope 9 is formed by providing the guide section 7 in a cone shape. The sectional area of the cone shape increases along a straight line proceeding direction of the fuel discharged through the penetration holes 3 from the nozzle body 5.
The fuel mass in vapor included in the returning fuel gets smaller in size when it passes through the penetration holes 3. Therefore, when the nozzle 1 is immerged in liquefied fuel, the fuel mass in vapor discharged from the nozzle 1 forms relatively small bubbles. The noise released from the small bubbles is very low even when they are broken. If the nozzle 1 of the present invention is used, the noise occurring in the cylinder can be greatly reduced in comparison with the noise occurring when the fuel mass in vapor included in the returning fuel is discharged without being reduced in size, such that large bubbles are broken open.
On the other hand, when the nozzle 1 is not immerged in liquefied fuel, the troublesome noise occurs when the fuel falls in the cylinder as liquefied fuel rather than when the bubbles are broken. The nozzle 1 not only reduces the noise occurring when the returning fuel falls in the cylinder as liquefied fuel by having the returning fuel pass through the penetration holes 3, thus reducing the size of fuel mass, but also the guide section 7 prevents the fuel from directly falling from the penetration holes 3 as liquefied fuel. In other words, the fuel passing through the penetration holes 3 falls with the kinetic energy reduced by the change of direction by the slope 9 and thus the noise is reduced further in comparison with the case where the fuel falls directly from the penetration holes 3 to the fuel in liquefied form. The guide section 7 formed as a cone shape, as describe above, doesn't just simply change the movement direction of the fuel coming from the penetration holes 3 but can reduce the falling noise by dispersing the fuel into cone shape.
Referring to
The nozzle 1 is equipped with a guide section 7 integrated into the nozzle body 5 to change the direction of fuel discharged from the penetration holes 3. A valve spool 17 is installed such that a straight sliding line is formed within the valve body 13. A spring 19 installed to allow only the flow of fuel streaming to the nozzle 1 from the return nipple 15 by applying an elastic force to the valve spool 17. A plunger 21 delivers the elastic force of the spring 19 to the valve spool 17 and guides the straight line sliding motion of the valve spool 17.
The fuel return valve 11 allows the fuel to be discharged into the cylinder through the nozzle 1 if the pressure of the fuel returned through the return nipple 15 from the injector overcomes the force of the spring 19 and pushes the valve spool 17 and plunger 21.
The penetration holes 3 of the nozzle 1 and the guide section 7 contribute to the reduction of noise generated by the bubbles in case that the nozzle 1 is immerged in liquefied fuel in the cylinder and reduce noise generated when the fuel falls on the fuel in case when the nozzle 1 is not immerged in liquefied fuel in the cylinder.
It will be appreciated by one of ordinary skill in the art that modifications and alterations can be adapted to the preferred embodiments thus described, however, the scope of the invention is to be defined and interpreted by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0073902 | Oct 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4503885 | Hall | Mar 1985 | A |
5285759 | Terada et al. | Feb 1994 | A |
6205981 | Lorraine | Mar 2001 | B1 |
6269800 | Fischerkeller et al. | Aug 2001 | B1 |
6415771 | Mihatsch et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
10-037504 | Oct 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20050087179 A1 | Apr 2005 | US |